Derisking Geological Storage w/ simulation-based seismic monitoring design & machine learning

Felix J. Herrmann^{1,2,3}

¹School of Electrical and Computer Engineering, Georgia Institute of Technology ²School of Earth and Atmospheric Sciences, Georgia Institute of Technology ³School of Computational Science and Engineering, Georgia Institute of Technology

Georgia Institute of Technology

Georgia Tech College of Computing School of Computational **Science and Engineering**

Georgia Tech College of Sciences School of Earth and **Atmospheric Sciences**

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0) Copyright (c) 2023, Georgia Tech

/II 4 Seismic

Georgia Tech College of Engineering School of Electrical and Computer Engineering

Derisking Geological Storage w/ simulation-based seismic monitoring design & machine learning

Huseyin Tuna Erdinc¹, Abhinav Prakash Gahlot², Ziyi Yin³, Mathias Louboutin², Felix J. Herrmann^{1,2,3}

¹School of Electrical and Computer Engineering, Georgia Institute of Technology ²School of Earth and Atmospheric Sciences, Georgia Institute of Technology ³School of Computational Science and Engineering, Georgia Institute of Technology

Georgia Institute of Technology

Georgia Tech College of Computing School of Computational **Science and Engineering**

Georgia Tech College of Sciences School of Earth and **Atmospheric Sciences**

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0) Copyright (c) 2023, Georgia Tech

/II 4 Seismic

Georgia Tech College of Engineering School of Electrical and Computer Engineering

Wood et. al, Locked away – geological carbon storage, The Royal Society, October 2022 Ringrose, Philip. How to store CO2 underground: Insights from early-mover CCS Projects, 2020.

Challenges monitoring Geological CO₂ Storage in Saline Aquifers

Regulators & general public require transparency & assurances that supercritical CO₂ stays put in the storage complex

- reservoir simulations alone are uncertain due to large variability permeability
- risk profile storage & containment highest at start & at end
- there is a need for reproducibility

Develop low-cost time-lapse seismic system to monitor CO₂ plumes

- maximally captures information collected over many decades
- Iow-cost by being sparse w/o insisting on replication of surveys
- attains accuracy needed to detect early onset leakage automatically
- collect 1–2 orders of magnitude cheaper over a century

Systematic assessment of risks using techniques from uncertainty quantification.

Risk profiles

Uncertainties & risk storage model

- highest at start
- diminish when more time-lapse data is collected

Containment risk increases

- ▶ w/ amount of CO₂ stored
- ► w/ size area undergoing pressure changes

There can be **NO** lapse in monitoring because

- any lack of *transparency* conformance
- ▶ will lead in loss in *confidence* by the *general* public

High-fidelity time-lapse information needs to be collected regularly over long periods of time!

uncertainty profile

containment risk profile

Workflow simulation-based seismic monitoring design

Ziyi Yin, Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin and F. Herrmann. "Derisking geological carbon storage from high-resolution time-lapse seismic to explainable leakage detection." The Leading Edge (2023).

Workflow

Ziyi Yin, Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin and F. Herrmann. "Derisking geological carbon storage from high-resolution time-lapse seismic to explainable leakage detection." The Leading Edge (2023).

proxy model

reservoir model

Rock property conversion

Workflow

Klimentos, Theodoros. "The effects of porosity-permeability-clay content on the velocity of compressional waves." Geophysics 56.12 (1991)

Conversion velocity \implies permeability

Converted with v_p 1km/s $\uparrow \Rightarrow K$ 1.63mD \uparrow

- ► K permeability
- v_p compressional wavespeed

Three main geologic sections:

- secondary seal Haisborough group (blue, > 300m, permeability 15 - 18mD)
- primary seal Rote Halite member (black, 50m, permeability $10^{-4} - 10^{-2}$ mD)
- saline aquifer Bunter sandstone (red, 300 - 500m, permeability > 200 mD)

Values taken from Strategic UK CCS Storage **Appraisal Project**

compressional wavespeed [km/s]

X [m]

Costa, Antonio. "Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption." Geophysical research letters 33.2 (2006).

Conversion permeability \implies porosity

Kozeny-Carman relationship:

$$K = \phi^3 \left(\frac{1.527}{0.0314(1 - \phi)} \right)^2$$

- ► *K* permeability
- ϕ porosity
- values taken from Strategic UK CCS Storage Appraisal Project

Permeability & porosity models serve as input for two-phase fluid flow simulations.

permeability [mD]

Fluid-flow modeling

Workflow

proxy model

reservoir model

Jansen, Jan Dirk. "Adjoint-based optimization of multi-phase flow through porous media-a review." Computers & Fluids 46.1 (2011): 40-51.

CO₂ dynamics two-phase flow equations

mass balance equation: $\frac{\partial}{\partial t}(\phi S_i \rho_i) + \nabla \cdot (\rho_i \mathbf{v}_i) = \rho_i q_i, \quad i = 1,2$

inject CO₂ to replace water

$$S_1 + S_2 = 1$$

Darcy's law:

$$\mathbf{v}_{i} = -\frac{Kk_{ri}}{\tilde{\mu}_{i}}(\nabla P_{i} - g\rho_{i}\nabla Z), \quad i = 1,2$$

fluid pressure:

$$P_2 = P_1 - P_c(S_2)$$

Symbol Meaning K permeability ϕ porosity k_{ri} relative permeability S_i fluid saturation P_i fluid pressure P_{c} capillary pressure **V**_i Darcy's velocity ρ_i fluid density $\tilde{\mu_i}$ fluid viscosity q_i injection/production rate *g* gravity constant Ζ vector of vertical direction

Pressure-induced fractures

https://github.com/slimgroup/Seis4CCS.jl/blob/main/notebooks/01_FlowSimulation.ipynb

Philip Ringrose. How to Store CO2 Underground: insights from earlymover CCS Projects. Springer, 2020. URL: <u>https://link.springer.com/</u> <u>book/10.1007/978-3-030-33113-9</u>.

Rock-physics modeling

Workflow

reservoir model

Rock physics patchy saturation model

CO₂ concentration $\uparrow \rightarrow v_p \& \rho \downarrow$

v_p decrease by 0-300 m/s

localized time-lapse changes

1.68% change in acoustic impedance

Per Avseth, et al. Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk. Cambridge university press, 2010. https://github.com/slimgroup/Seis4CCS.jl/blob/main/src/RockPhysics/RockPhysicsFunctions.jl

 B_{r1}

 $\frac{B_{r2}}{B_o - B_{r2}}$

 μ_r

 \hat{B}_r

 $\hat{
ho}_r$

 \hat{v}_p

Symbol	Meaning
B_{r1}/B_{r2}	bulk modulus of rock fully saturated with fluid 1/2
B_{f1}/B_{f2}	fluid bulk modulus
$ ho_{f1}/ ho_{f2}$	fluid density
μ_r	rock shear modulus
v_p/v_s	rock P/S-wave velocity
B_{o}	bulk modulus of rock grains
$ ho_r$	rock density
ϕ	rock porosity
S	CO ₂ saturation

$$= \rho_r (v_p^2 - \frac{4}{3}v_s^2)$$

$$= \rho_r v_s^2$$

$$= \frac{B_{r1}}{B_o - B_{r1}} - \frac{B_{f1}}{\phi(B_o - B_{f1})} + \frac{B_{f2}}{\phi(B_o - B_{f2})}$$

$$= [(1 - S)(B_{r1} + \frac{4}{3}\mu_r)^{-1} + S(B_{r2} + \frac{4}{3}\mu_r)^{-1}]^{-1} - \frac{4}{3}\mu_r$$

$$= \rho_r + \phi S(\rho_{f2} - \rho_{f1})$$

$$= \sqrt{\frac{\hat{B}_r + \frac{4}{3}\mu_r}{\hat{\rho}_r}}$$

Seismic modeling

Workflow

reservoir model

- ► 32 non-replicated source locations (average source sampling 125m)
- Ricker wavelet w/ central frequency 25 Hz

Seismic time-lapse simulations

```
# Generate nv vintages of linear data
F0 = [Pr*judiModeling(model0)*Ps[i]' for I=1:nv]
  = [judiJacobian(F0[i], q[i]) for i=1:nv]
dlin = J * dimp
# add band-limited noise
noise = deepcopy(dlin)
for k = 1:nv
    for l = 1:nsrc
        # filter white noise by source wavelet
    end
end
     = 8.0f0
snr
noise = noise/norm(noise) * norm(dlin) * 10f0^(-snr/20f0)
dlin = dlin + noise
```

- Inearized Born modeling (demigration)
- SNR 8 dB by adding white noise filtered w/ source wavelet

https://github.com/slimgroup/GCS-CAM/blob/main/scripts/GenLinData.jl

8 dB additive noise

Time-lapse imaging

Workflow

reservoir model

Li, Xiaowei. A weighted l_1 -minimization for distributed compressive sensing. Diss. University of British Columbia, 2015.

 $\gamma (0 < \gamma < n_v)$ controls weight on *common* component

1st column adds complementary info v

exploit shared information

No need to replicate to get high degrees of repeatability

https://github.com/slimgroup/GCS-CAM/blob/main/scripts/JRM.jl

common component components

when
$$\mathbf{A}_i \neq \mathbf{A}_j$$

Witte, P. A., Louboutin, M., Luporini, F., Gorman, G. J., & Herrmann, F. J. (2019). Compressive least-squares migration with on-the-fly Fourier transforms. Geophysics, 84(5), R655-R672.

Yang, M., Fang, Z., Witte, P., & Herrmann, F. J. (2020). Time-domain sparsity promoting least-squares reverse time migration with source estimation. Geophysical *Prospecting*, 68(9), 2697-2711.

Optimization **linearized Bregman Iterations**

Solve via curvelet-domain sparsity promotion:

 λ mın X subject to

for k = 1, 2, ... $\mathbf{u}^{k+1} = \mathbf{u}$

 $x^{k+1} = C$

C – curvelet transform

 $S(t, \lambda) = \max\{|t| - \lambda, 0\}$ sign(t) – soft thresholding w/ threshold λ

$$\begin{aligned} \|\mathbf{C}\mathbf{x}\|_{1} + \frac{1}{2} \|\mathbf{C}\mathbf{x}\|_{2}^{2} \\ \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} \leq \sigma^{2} \end{aligned}$$

$$\mathbf{L}^{k} - t^{k} \mathbf{A}^{(k)^{\mathsf{T}}} (\mathbf{A}^{(k)} \mathbf{x}^{k} - \mathbf{b}^{(k)})$$
$$\mathbf{L}^{\mathsf{T}} S(\mathbf{C} \mathbf{u}^{k+1}, \lambda)$$

 $A^{(k)}$, $b^{(k)}$ – the demigration operator for randomly (w/ replacement) selected shots

Ziyi Yin, Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin and F. Herrmann. "Derisking geological carbon storage from high-resolution time-lapse seismic to explainable leakage detection." The Leading Edge (2023).

Ziyi Yin, Mathias Louboutin, and Felix J. Herrmann. "Compressive time-lapse seismic monitoring of carbon storage and sequestration with the joint recovery model." IMAGE. 2021.

Seismic imaging JRM vs RTM JRM

Number of iterations: 22

Batch size: 4

Number of sources: 32

Number of data passes: 3

RTM

Ziyi Yin, Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin and F. Herrmann. "De-risking geological carbon storage from high resolution time-lapse seismic to explainable leakage detection." The Leading Edge (2023).

Ziyi Yin, Mathias Louboutin, and Felix J. Herrmann. "Compressive time-lapse seismic monitoring of carbon storage and sequestration with the joint recovery model." IMAGE. 2021.

Time-lapse differences

Independent RTMs NRMS = 8.48%

NRMS = 200% × $\frac{||\mathbf{x}_1 - \mathbf{x}_2||}{||\mathbf{x}_1|| + ||\mathbf{x}_2||}$

JRM NRMS = 3.20%

Automatic leakage detection w/ explainable ML

Ziyi Yin, Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin and F. Herrmann. "Derisking geological carbon storage from high-resolution time-lapse seismic to explainable leakage detection." The Leading Edge (2023). Erdinc, H. T., Gahlot, A. P., Yin, Z., Louboutin, M., & Herrmann, F. J. De-risking Carbon Capture and Sequestration with Explainable CO2 Leakage Detection in Time-lapse Seismic Monitoring Images. *AAAI Symposium (2022)*

Jones, C., Edgar, J., Selvage, J., and Crook, H., 2012, Building complex synthetic models to evaluate acquisition geometries and velocity inversion technologies: In 74th EAGE conference and exhibition, pp. cp–293

Training setCompass model

Five different 2D velocity slices 1000 leak/no leak scenarios

Retrieved from Jones (2008)

Ziyi Yin, Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin, and Felix J. Herrmann, "Derisking geological carbon storage from high-resolution time-lapse seismic to explainable leakage detection", The Leading Edge, vol. 42, pp. 69–76, 2023.

Training dataset

▶ pressure ≥ 15 MPa seal opens (12.5 m - 62.5 m) randomly

- ▶ permeability 10^{-4} md → 500 md
- Inear time-lapse data generated w/ & w/o leakage

time-lapse data inverted after 200 days w/ JRM https://github.com/slimgroup/GCS-CAM/blob/main/scripts/JRM.jl

Seismic imaging no leakage

Difference images will be network input

Seismic imaging leakage

10X leakage difference image

Difference images will be network input

JRM vs independent Imaging **NRMS** histogram

JRM:

NRMS statistics

Class activation mapping

Workflow

reservoir model permeability, porosity

proxy model

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint

https://github.com/slimgroup/GCS-CAM/blob/main/scripts/main.ipynb

Results Class Activation Mapping

leakage

plume

regular

Examples

Seismic Image

CAM on Seismic Image

Seismic Image

CAM on Seismic Image

Thresholded CAM maps (<0.2)

Localized areas of (potential) leakage

Seismic Image

Seismic Image

CAM on Seismic Image

CAM on Seismic Image

importance

Ziyi Yin, Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin, and Felix J. Herrmann, "Derisking geological carbon storage from high-resolution time-lapse seismic to explainable leakage detection", The Leading Edge, vol. 42, pp. 69–76, 2023.

Results

Overall 86.29% accuracy

- relied on dense receiver sampling
- relatively high percentage false negatives
- fewer false positives
- may need improvement

https://github.com/slimgroup/GCS-CAM/blob/main/scripts/main.ipynb

Improved leakage detection w/ data augmentation

Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin, and Felix J. Herrmann, "Enhancing CO2 Leakage Detectability via **Dataset Augmentation**". 2023

Problem leakage detection deteriorates

accuracy decreases w/ receiver density

solution augment training set

Issue sparse receiver sampling

20 Receiver Configuration 250 **b** 500 750 1000 1250 1500 1750 1750 Receiver 2000 -X[m] 1500 2500 4000 500 1000

3000

3500

Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin, and Felix J. Herrmann, "Enhancing CO2 Leakage Detectability via Dataset Augmentation". 2023.

Solution data augmentation

- produce difference images w/ random number of receivers
- add new images to training dataset
- retrain the model w/ augmented dataset
- test on different receiver configurations

Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin, and Felix J. Herrmann, "Enhancing CO2 Leakage Detectability via **Dataset Augmentation**". 2023

Results after data augmentation

Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin, and Felix J. Herrmann, "Enhancing CO2 Leakage Detectability via **Dataset Augmentation**". 2023

Results after data augmentation

lapse seismic data

Mathias Louboutin, Ziyi Yin, Rafael Orozco, Thomas J. Grady II, Ali Siahkoohi, Gabrio Rizzuti, Philipp A. Witte, Olav Møyner, Gerard J. Gorman, and Felix J. Herrmann, "Learned multiphysics inversion with differentiable programming and machine learning". 2023

Permeability inversion from time-

End-to-end inversion permeability

Mathias Louboutin, Ziyi Yin, Rafael Orozco, Thomas J. Grady II, Ali Siahkoohi, Gabrio Rizzuti, Philipp A. Witte, Olav Møyner, Gerard J. Gorman, and Felix J. Herrmann, "Learned multiphysics" inversion with differentiable programming and machine learning". 2023

permeability K

CO₂ concentration

fluid-flow physics

minimize K

CO₂ plume predictions & forecast

monitor year 25

physical time

year 10

year 20

initial

ground truth

inverted

forecast

year 30

year 40

year 50

Mathias Louboutin, Ziyi Yin, Rafael Orozco, Thomas J. Grady II, Ali Siahkoohi, Gabrio

Acknowledgements

and partners of the ML4Seismic Center.

Petroleum) and Platinum sponsors (Chevron Corporation, ExxonMobil Corporation, Shell plc, S&P Global Inc) for their support.

- Thank the Diamond sponsors (Equinor ASA, Microsoft Corporation, Occidental
- This work was supported in part by the US National Science Foundation grant OAC 2203821 and the Department of Energy grant No. DE-SC0021515.
 - https://slim.gatech.edu/

