Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0) Copyright (c) 2015 SLIM group @ The University of British Columbia

Resovling Scaling Ambiguities with the measure in a blind deconvolution problem with feedback Ernie Esser[†], Rongrong Wang, Tim T.Y. Lin, and Felix J. Herrmann

Motivation

In exploration geophysics, reflected seismology refers to methods that use principles of scattering to estimate the properties of the Earth's subsurface from reflected waves.

- Waves are generated by a man-made source towed by a ship.
- Data are collected at the surface and after some preprocessing it contains reflection events in the form of convolutions of the source wavelet Q and the subsurface Green's function G, i.e., Q*G, Q*G*G, etc.
- The sea surface is a perfect reflector (reflection coefficient is -1).
- The primary waves are sent back into the subsurface acting as a secondary source and generate echoes, called multiples.

The Surface- Related Multiple Elimination (SRME) [Verschuur, et al. 1992] formula gives the relationship between the data P, source Q, and Green's function:

$$\hat{P} = \hat{G}(\hat{Q} - \hat{P})$$

Challenges: to recover G and Q jointly from P under minimal assumptions.

Model

We consider the 1D version of (1)

 $\hat{y} = \hat{w} \otimes (\hat{x} + \hat{y}) \otimes \hat{v}$ pointwise product

with a time domain representation:

$$y = w * x - w * x * x + w * x * x * x * x \cdots$$
primary first order multiple second order multiple
$$= w * x - y * x$$
sumptions: • $x, \hat{x} \in L^{1}(R)$
(2)

• $w, \hat{w} \in L^1(R)$

• x is sparse in time.

Goal: recover x and w jointly from y

Previous meth

By truncating the data record, the data no multiples, therefore satisfies the sim

y = w * x

However, this simpler model is ill-posed ambiguities, and regularization CANNO ambiguities.

According to [Benichoux, Vincent and G global minimizer of $\min_{x,w} \frac{\pi}{2} \|y - x * w\|_2^2 + \|x\|_1$

is trivial: $x\sim\delta$, for any translation invaria.

Previous method

Estimation of Primaries by Sparse Invers and Verschuur, 2009; Lin and Herrmann

- Alternatively update x and w
- Use L1 norm regularization when up

 $x_k = \arg\min \|y - w_k * z +$

- Assume short duration of w $w, w = Ch, C = [I, 0]^T$
- Solve a least-squares problem to upd

$$\widetilde{w}_k = C \arg\min_{a} \|y - (Cg) \|$$

• The success of the algorithm relies on good initial guesses as well as a manual rescaling of the wavelet $w_k = \alpha \widetilde{w}_k / \|\widetilde{w}_k\|_2$

nod 1	Theoretical analysis	Algo
of early times contains ople convolution model,	Theorem 1 Suppose $x, w, \hat{x}, \hat{w} \in L^1(\mathbb{R})$, and $ x _1 < 1$ then the right-hand side of the following quantity exists and is integrable	Original proble
d—has scaling and shift T avoid these	$y := \sum_{i=1}^{\infty} (-1)^{i-1} w * x^{*i}.$ (3) Moreover, there exist a sequence $\alpha_k \in (1, \infty)$ and a sequence of functions $x_k \in$	$\min_{x,w} \log$
(a) Convolution model	$L^{1}(\mathbb{R}) \text{ such that}$ $\bullet \alpha_{k} \to 1^{+},$ $\bullet (\alpha_{k}w, x_{k}(\alpha_{k})) \text{ is consistent with } y \text{ (in the sense that } (\alpha_{k}w, x_{k}(\alpha_{k}), y) \text{ sat-isfies } (3),$	Split x into positi $\min_{x,w} 1$
(b) Scaling ambiguity	and $ x_k _1 < x _1$ for each k. In other words, the true solution (w, x) is not a local minimum to the optimization problem	
(c) Shift ambiguity	$\min_{\widetilde{w},\widetilde{x}} \ \widetilde{x}\ _1 \text{ subject to } y = \sum_{i=1}^{\infty} (-1)^{i-1} \widetilde{w} * \widetilde{x}^{*i}.$	Lifting: increase $\min_{R_1, \dots, R_4} \operatorname{Trace}(X)$
(d) Other ambiguities	Theorem 2 Assume $supp(x) \cap supp(x * x) = \emptyset$. Then there is no sequence $\alpha_k \to 1$ and x_k , such that	subject to $\ \hat{y} - \hat{y}\ $
Gribonval 2013], the	• $(\alpha_k w, x_k(\alpha_k))$ is consistent with y, and	$Trace$ $R_4 R_1^7$
$\ + eta \ w \ $ nt seminorm $\ \cdot \ $.	• $ x_k _1/ x_k _2 < x _1/ x _2$. Consequently, the scaling is locally correct when minimizing the ℓ_1/ℓ_2 penalty.	$R_4 R_2^T$ $R_4 R_4^T$ $R_4 R_4^T$ $X =$
2 (EPSI)	$1.8 - \begin{array}{c} 2 \\ 1.8 \end{array} - \begin{array}{c} 1.8 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	
rsion (EPSI, Groenestijn n 2013): odating x $-y*z\ _2^2 + \lambda \ z\ _1$	1.6 1.6 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	000 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
odate w	$\begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ alpha \end{array} \begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 1 \\ 0.5 \\ 0.5 \\ 1 \\ 0.5 \\ $	

 $\|x_k + y * x_k\|_2^2$

is consistent with the data when convolved with a scaled kernel αw . For the simple convolution (3) in panel (a), all norms here are ineffective at indicating the unscaled kernel (where $\alpha = 1$). For the feedback-type convolution (2) shown in panel (b), the scale sensitive ℓ_1 and ℓ_p norms remain ineffective, but the scale invariant ℓ_0 and ℓ_1/ℓ_2 norms identify the unscaled kernel with clear minima.

Data constraint

Box constraint

Data constraint

Box constraint

Non-overlapping

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

gorithm (method of multipliers with a lifting)

lem (non-convex, non differentiable)

 $\log(||x||_1/||x||_2)$

ject to
$$\|\hat{y} - \operatorname{diag}(\hat{w}\hat{x}^T) - \operatorname{diag}(\hat{y}\hat{x}^T)\|_2 \le \epsilon$$

 $\|x\|_{\infty} \le 1$

sitive and negative parts (non-convex): $x = x_+ - x_-$

$$\log(\sum x_{+} + \sum x_{-})/(||x_{+} + x_{-}||_{2})$$

ject to
$$\|\hat{y} - \operatorname{diag}(\hat{w}\hat{x}^T) + \operatorname{diag}(\hat{y}\hat{x}^T)\|_2 \le \epsilon$$

 $0 \le x_+, x_-, \le 1$
 $\langle x_+, x_- \rangle = 0$

se the rank of w,x from 1 to $\mathsf{r}:w o R_1,x_+ o R_2,x_- o R_3$

$$\mathbf{t}(X) - \|X\|_F + \log[\mathbf{1}^T (R_2 R_2^T + R_3 R_3^T + 2R_3 R_2^T)\mathbf{1}] - \log[\operatorname{Trace}(R_2 R_2^T + R_3 R_3^T))$$

Figure 1: (a) True wavelet, (b) True signal, (c) Spectrum of the wavelet measured in dB, (d) Data record with feedback.

Figure 2: Reconstruction of x using (4) using various ranks in the lifting. (a) r=1, (b) r=2, (c) r=3, (d) r=4.

† John "Ernie" Esser (May 19, 1980 - March 8, 2015)

This work is a reflection of Ernie's extraordinary contributions to this challenging problem. Unfortunately, Ernie was not able to see the final results of his original work. We miss him dearly, and will continue to work on this exciting approach.

Acknowledgement

We would like to thank all of the sponsors of SINBAD project for their continued support.

References

[1] A. Benichoux, E. Vincent, and R. Gribonval. A fundamental pitfall in blind deconvolution with sparse and shift-invariant priors. In ICASSP-38th International Conf. on Acoustics, Speech, and Signal Processing, 2013.

[2] A. Cosse, S. D. Shank, and L. Demanet. A short note on rank-2 relaxation for waveform inversion. 2015.

[3] E. Esser, Y. Lou, and J. Xin. A method for finding structured sparse solutions to nonnegative least squares problems with applications. SIAM Journal on Imaging Sciences, 6(4):2010-2046, 2013.

[4] D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution using a normalized sparsity measure. in Proc. IEEE Conf. Comput. Vis. Pattern Recogn., pages 233–240, 2011. [5] T. T. Y. Lin and F. J. Herrmann. Robust estimation of primaries by sparse inversion via one-norm minimization Geophysics, 78(3):R133–R150, May 2013.

[6] X. Long, K. Solna, and J. Xin. Two l1 based nonconvex methods for constructing sparse mean reverting portfolios UCLA CAM Reports, pages 1–29, 2014.

[7] A. Repetti, M. Pham, and L. Duval. Euclid in a taxicab: Sparse blind deconvolution with smoothed 11/12 regularization. Signal Processing Letters, IEEE, 22(5):539-543, 2015.

[8] G. J. van Groenestijn and D. J. Verschuur. Estimating primaries by sparse inversion and application to near-offset data reconstruction. Geophysics, 74(3):A23-A28, 2009. [9] D. J. Verschuur, A. J. Berkhout, and C. P. A. Wapenaar. Adaptive surface related multiple elimination. Geophysics,, 57(9):1166-1177., 1992.

Results

