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•  Waves	are	generated	by	a	man-made	source	towed	by	a	ship.	
•  Data	are	collected	at	the	surface	and	a;er	some	preprocessing	it	

contains	reflec=on	events	in	the	form	of	convolu=ons	of	the	
source	wavelet	Q	and	the	subsurface	Green’s	func=on	G,	i.e.,	
Q*G,	Q*G*G,	etc.	

•  The	sea	surface	is	a	perfect	reflector	(reflec=on	coefficient	is	-1).	
•  The	primary	waves	are	sent	back	into	the	subsurface	ac=ng	as	a	

secondary	source	and	generate	echoes,	called	mul=ples.	
	
The	Surface-	Related	Mul=ple	Elimina=on	(SRME)	[Verschuur,	et	al.	
1992]	formula	gives	the	rela=onship	between	the	data	P,	source	Q	,	
and	Green’s	func=on:		

(1)			
Challenges:	to	recover	G	and	Q	jointly	from	P	under	minimal	
assump=ons.		

We	consider	the	1D	version	of	(1)		
	
	
with	a	=me	domain	representa=on:	
	
															

	(2)	
Assump=ons:	
	
	
	
Goal:	recover						and							jointly	from						.	

ŷ = ŵ ⌦ (x̂+ ŷ) ⌦: pointwise product

In	explora=on	geophysics,	reflected	seismology	refers	to	methods	
that	use	principles	of	scaYering	to	es=mate	the	proper=es	of	the	
Earth’s	subsurface	from	reflected	waves.		
	

y = w ⇤ x� w ⇤ x ⇤ x+ w ⇤ x ⇤ x ⇤ x · · ·
= w ⇤ x� y ⇤ x

• x, x̂ 2 L

1(R)

• w, ŵ 2 L

1(R)

• x is sparse in time.

x w y

By	trunca=ng	the	data	record,	the	data	of	early	=mes	contains	
no	mul=ples,	therefore	sa=sfies	the	simple	convolu=on	model,	

	
However,	this	simpler	model	is	ill-posed—has	scaling	and	shi;	
ambigui=es,	and	regulariza=on	CANNOT	avoid	these	
ambigui=es.	

Es=ma=on	of	Primaries	by	Sparse	Inversion	(EPSI,	Groenes=jn	
and	Verschuur,	2009;	Lin	and	Herrmann	2013):		
•  Alterna=vely	update	x	and	w	
•  Use	L1	norm	regulariza=on	when	upda=ng	x	
	
	
•  Assume	short	dura=on	of	w		
	
•  Solve	a	least-squares	problem	to	update	w	
	
	
•  The	success	of	the	algorithm	relies	on	good	ini=al		
						guesses	as	well	as	a	manual	rescaling	of	the	wavelet			
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y = w ⇤ x

xk = argmin
z

ky � wk ⇤ z + y ⇤ zk22 + �kzk1

ewk = C argmin
g

ky � (Cg) ⇤ xk + y ⇤ xkk22

wk = ↵ ewk/k ewkk2

Split x into positive and negative parts (non-convex): x = x+ � x�

Original problem (non-convex, non differentiable) 
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min

x,w

log(kxk1/kxk2)

subject to kŷ � diag(ŵx̂

T
)� diag(ŷx̂

T
)k2  ✏

kxk1  1

Data	constraint	

Box	constraint	

Li;ing:	increase	the	rank	of													from	1	to		r	:	

Values of di↵erent measures of signals x(↵) as function of ↵, where x(↵)

is consistent with the data when convolved with a scaled kernel ↵w. For the

simple convolution (3) in panel (a), all norms here are ine↵ective at indicating

the unscaled kernel (where ↵=1). For the feedback-type convolution (2) shown

in panel (b), the scale sensitive `1 and `p norms remain ine↵ective, but the scale

invariant `0 and `1/`2 norms identify the unscaled kernel with clear minima.

min

R1,··· ,R4

Trace(X)� kXkF + log[1T
(R2R

T
2 +R3R

T
3 + 2R3R

T
2 )1]� log[Trace(R2R

T
2 +R3R

T
3 ))

X =
⇥
RT

1 RT
2 RT

3 RT
4

⇤T ⇥
RT

1 RT
2 RT

3 RT
4

⇤
.

Data	constraint	
Non	overlapping	
Short	kernel	(op#onal)	
Box	constraint	
Weights	summing	up	to	1	

w ! R1, x+ ! R2, x� ! R3w, x
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Figure	1:	(a)	True	wavelet,	(b)	True	signal,	(c)	Spectrum	of	
the	wavelet	measured	in	dB,	(d)	Data	record	with	feedback.	

Figure	2:	Reconstruc#on	of	x	using	(4)	using	various	
ranks	in	the	liJing.	(a)	r=1,	(b)	r=2,	(c)	r=3,	(d)	r=4.	

Theorem 1 Suppose x,w, x̂, ŵ 2 L

1
(R), and kxk1 < 1 then the right-hand side

of the following quantity exists and is integrable

y :=

1X

i=1

(�1)

i�1
w ⇤ x⇤i

. (3)

Moreover, there exist a sequence ↵

k

2 (1,1) and a sequence of functions x

k

2
L

1
(R) such that

• ↵

k

! 1

+
,

• (↵

k

w, x

k

(↵

k

)) is consistent with y (in the sense that (↵

k

w, x

k

(↵

k

), y) sat-

isfies (3),

and kx
k

k1 < kxk1 for each k. In other words, the true solution (w, x) is not a

local minimum to the optimization problem

min

ew,ex
kexk1 subject to y =

1X

i=1

(�1)

i�1 ew ⇤ ex⇤i
.

Theorem 2 Assume supp(x) \ supp(x ⇤ x) = ;. Then there is no sequence

↵

k

! 1 and x

k

, such that

• (↵

k

w, x

k

(↵

k

)) is consistent with y, and

• kx
k

k1/kxk

k2 < kxk1/kxk2.

Consequently, the scaling is locally correct when minimizing the `1/`2 penalty.

†

(a)  Convolu#on	model	

(b)  Scaling	ambiguity	

(c)  ShiJ	ambiguity	

(d)  Other	ambigui#es	

P̂ = Ĝ(Q̂� P̂ )

first	order	mul=ple	 second	order	mul=ple	primary	

min

x,w

log(

X
x+ +

X
x�)/(kx+ + x�k2)

Data	constraint	
Box	constraint	
Non-overlapping	

subject to kŷ � diag(ŵx̂

T
) + diag(ŷx̂

T
)k2  ✏

0  x+, x�, 1

hx+, x�i = 0
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min
x,w

�

2
ky � x ⇤ wk22 + kxk1 + �kwk

According	to	[Benichoux,	Vincent	and	Gribonval	2013],	the	
global	minimizer	of		

is	trivial:														,	for	any	transla.on	invariant	seminorm										.	
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k · k
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w,w = Ch,C = [I, 0]T

subject to kŷ � diag(
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