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Abstract

Compared to more mundane blind deconvolution problems, blind deconvolution in seismic applications
involves a feedback mechanism related to the free surface. The presence of this feedback mechanism gives
us an unique opportunity to remove ambiguities that have plagued blind deconvolution for a long time.
While beneficial, this feedback by itself is insufficient to remove the ambiguities even with `1 constraints.
However, when paired with an `1/`2 constraint the feedback allows us to resolve the scaling ambiguity
under relatively mild assumptions. Inspired by lifting approaches, we propose to split the sparse signal
into positive and negative components and apply an `1/`2 constraint to the difference, thereby obtaining a
constraint that is easy to implement. Numerical experiments demonstrate robustness to the initialization
as well as to noise in the data.

1 Introduction

Deconvolution problems often arise in physical measurements, where the experimental apparatus introduces
a linear time-invariant transfer function from the true underlying signal to the measured data. This effect
often degrades the fidelity of measurements, and counteracting it will necessitate deconvolving from the data
a blurring kernel that describes the measurement system. Also, in many realistic scenarios the blurring
kernel is imprecisely or not at all known a-priori, in which case the deconvolution is blind. Obtaining a useful
solution in blind deconvolution often requires imposing tight bounds on the subspaces in which the kernel
and the underlying signal lie, making the process susceptible to heavy influences from any prior assumptions
on the signal model.

In addition to a linear transfer function, some measurement processes also incorporates a feedback mech-
anism, where the reflections of the signal off the recording apparatus causes further excitation the measured
system. One example of this type of system is in active seismological surveys where both the artificial sources
and the detectors are located at the Earth’s surface, from which recorded seismic waves can be assumed to
scatter perfectly back into the Earth as secondary sources. As a consequence, the observed data contains
both primary reflections and its echoes (called multiples in the geophysical context). These echoes are essen-
tially high-order moments (under convolution) of the underlying signal, which is a non-linear relation that
is decoupled from the transfer function of the measurement system. Therefore we might consider whether
the feedback effect imposes enough additional structure to the blind deconvolution problem in a way that
can lessen the set of prior assumptions needed to constrain the signal model.

∗#Ernie Esser (1980-2015), who passed away under tragic circumstances, was an extremely enthusiastic and talented re-
searcher who was, above all, immensely generous with his time and ideas. This work is an attempt to share his work and is a
reflection of what a true privilege it has been to have had the opportunity to work with Ernie.
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This work will mainly consider how the feedback convolution model interacts with a common regularizer
in deconvolution, in which a sparsity assumption is imposed on the underlying signal. Specifically, an `1-norm
constraint or minimization formulation is popular due to a favourable mix of sparsifying efficacy and the
wide availability of solution algorithms. We show that the amplitude sensitivity of `1 (or even `p<1) norms
do not lead to the resolution of the basic scaling ambiguity in blind deconvolution even with the feedback
system, but more importantly that the unique combination of a feedback system and a scaling-insensitive
`1/`2 norm ratio can actually have a local minimum at the correct scaling. We also propose an algorithm to
solve this problem in a feasible way using lifting and the method of multipliers.

2 Theoretical result

2.1 Blind deconvolution

In many applications, we record data that are the convolution (represented by operator ⊗) of the signal of
interest x ∈ RN with some (unknown) blurring kernel w ∈ RN plus additive noise n ∈ RN—i.e., we have

y(t) = w(t)⊗ x(t) + n(t). (1)

Given full knowledge of this kernel, we can under certain conditions deconvolve y and retrieve x despite the
fact that this inverse problem is ill-posed because w is band-limited. In this case, there will be frequencies
θ such that ŵ(θ) = 0. Hence, for noise-free data (n = 0) we have ŷ(θ) = ŵ(θ)x̂(θ) = 0. As a consequence,
the missing bands of w turn (1) into an underdetermined system of equations.

When x is sparse, or permits some compressible representation (with fast decay for the magnitude-sorted
coefficients), we can overcome this ill-posedness by imposing structure-promoting regularizations on x such
as the `1-norm penalty—i.e., we solve the following program

min
x=Cz

‖y − w ⊗ x‖+ λ‖z‖1,

where C is some sparsifying basis and λ some control parameter balancing the data validity and the `1-norm
penalty.

While sparsity-promoting deconvolutions have been carried out with great success, these problems become
drastically more challenging when the convolution kernel is unknown. In this case, the problem has two
unknowns and is known as blind deconvolution, which suffers from scaling and shift ambiguities—i.e. if the
pair (ŵ, x̂) is a solution of (1) so is

(
αŵ(t− β), 1

α x̂(t+ β)
)

for any 0 6= α ∈ R and β ∈ R. Moreover, it
has been shown by [1] that minimizing the data misfit with an additional `1-norm penalty on x and a shift-
invariant norm penalty on w never returns the true solution unless x is a delta function. Possible remedies
include imposing support constraints on w and x, or using other regularizers such as the ratio of `1 to `2
norm.

2.2 The ratio of `1 to `2 norm

Intuitively, the `1 norm is not minimized at the true solution because it is biased towards small scalings. As
a remedy, we may put a similarly biased penalty on w to balance the scaling between the unknowns w and x,
but this approach raises the question how to choose these relative weights. As recognized by [1, 7, 6, 3], the
ratio between the `1 and `2-norms is scale invariant, thus is arguably more stable for the blind deconvolution
problem.

2.3 Convolution systems with feedback

Mathematically, the expression of this feedback system (introduced in [9] in the geophysical context) in 1D
reads

y = w ⊗ x− w ⊗ x⊗ x+ w ⊗ x⊗3 − w ⊗ x⊗4 + ....

= w ⊗ x− x⊗ y, (2)
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where the alternating signs are related to the minus sign of the free-surface reflection coefficient, and ⊗n

stands for order n auto-convolutions of x with itself.
We recognize the first term on the RHS as the convolution of the primary reflections with the wavelet

while all other terms are echoes—i.e., multiples. Because these multiples can be wrongly identified as layers,
one of the primary tasks in seismic imaging is to remove these multiples, which may overlay late primaries.

In the context of geophysics, many attempts have been made to solve the typical blind deconvolution
problem with approaches that assume the underlying signal to be white and the kernel to be minimum phase,
or by maximizing the kurtosis of the underlying signal. A more recent approach known as Estimation of
Primaries by Sparse Inversion (EPSI) model used in ([8, 5]) aims to invert the feedback system (2) using
a block coordinate-descent algorithm that imposes `1 regularization on the underlying signal. While this
latter approach has been demonstrated to work successfully, it requires relatively ad-hoc, carefully-performed
initialization and normalization steps to recover the correct relative scaling between x and w.

2.4 Resolving the scaling ambiguity of feedback system with l1/l2 norm

The physical feedback mechanism that leads to the system described in (2) removes the trivial scale ambiguity,
which plagues the traditional blind deconvolution problem. However, as we state in the following theorem
this scaling issue can never be truly resolved when imposing the `1-norm on the primary reflections. For
simplicity of presentation, we work in the continuous domain and use x̂, ŵ to denote the continuous Fourier
transform of x and w and L1(R) := {f :

∫
t

|f |dt < ∞} represents the set of integrable functions of real

variables.

Theorem 2.1. Suppose x,w, x̂, ŵ ∈ L1(R), and ‖x‖1 < 1 then the right-hand side of the following quantity
exists and is integrable

y :=

∞∑
i=1

(−1)i−1w ⊗ x⊗i. (3)

Moreover, there exist a sequence αk ∈ (1,∞) and a sequence of functions xk ∈ L1(R) such that

• αk → 1+,

• (αkw, xk) is consistent with y (in the sense that (αkw, xk, y) satisfies (3)),

and ‖xk‖1 < ‖x‖1 for each k. In other words, the true solution (w, x) is not a local minimum to the
optimization problem

min
w̃,x̃
‖x̃‖1 subject to y =

∞∑
i=1

(−1)i−1w̃ ⊗ x̃⊗i (4)

Remark 1. The constraint ‖x‖1 < 1 prevents the energy from diverging when performing higher and higher
order convolutions on the RHS of (3).

Remark 2. For any signal x, we can find a consistent x̃ with a smaller `1 norm according to this theorem.
Therefore the `1 penalty still exhibits bias towards small scaling as in the non-feedback case. Moreover, since
αw has the same support as w, then we can not expect any support assumptions on w to prevent α from
going into the wrong direction.

Now let us look at the non-convex `1/`2-norm and whether its scale invariance properties can provide a
better measure to overcome the scaling ambiguity to a certain degree. (In the expressions below, supp(x)
stands for the support of x.)

Theorem 2.2. Assume supp(x) ∩ supp(x⊗ x) = ∅. Then there is no sequence αk → 1 and xk, such that

• (αkw, xk) is consistent with y, and
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(a) typical convolution
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(b) feedback convolution

Figure 1: Different norm measures (normalized and shifted) of a signal xα that results in the same observation
when convolved with a scaled kernel αw. For the typical convolution (1) shown in panel (a), all norms here
are ineffective at indicating the unscaled kernel (where α=1). They are either completely insensitive to
scaling (`0, dotted line; `1/`2, solid line; overlapping in panel a), or do not reach a minimum at α=1 (`1,
dash line; `p=0.8, dash-dot line; overlapping in panel a). For the feedback-type convolution (2) shown in
panel (b), the scale sensitive `1 and `p norms remain ineffective, but the scale invariant `0 and `1/`2 norms
identify the unscaled kernel with clear minima.

• ‖xk‖1/‖xk‖2 < ‖x‖1/‖x‖2.

Consequently, the scaling is locally correct when minimizing the `1/`2 penalty.

Figure 1b empirically confirms the above two theorems for the discrete case. It contains plots of the `1
and `1/`2 norms of solutions xα for various scalings of w with α. The original signal has a sparsity of 5, and
we observe with the `0 measure that any perturbation of α around 1 tends to make xα less sparse. For this
type of scaling, (2) still permits an explicit Fourier-domain expression for any given pair (αw, xα) fitting the
data with the scaled model x̂α = ŷ/(αŵ − ŷ). The true solution for α = 1 corresponds to a local minimum
for the `1/`2 norm of xα, but it is not a local minimum for both the `1 norm and the `p norm with p < 1.
While the `p norm is even more biased towards sparse signals than the `1 norm, it does not seem to achieve
the same level of amplitude invariance as the `1/`2 norm.

3 A new algorithm for blind deconvolution

Despite the fact that the mathematical properties of the systems with or without feedback have little in
common, algorithms initially designed for blind deconvolution ([7, 6, 3, 4]) can be applied to systems with
feedback. We discuss some related work with the one over two norm penalty. The optimization problem in
these works has the general form

min
w,x
‖y − w ⊗ x‖2 + λφ

(
‖x‖1
‖x‖2

)
+ ρ(x,w), (5)

where φ is a non-decreasing function, ρ(x,w) = ρ1(x) + ρ2(w) with convex ρ1, ρ2 representing additional
constraints on x and w. Efforts made to tackle the non-smoothness and non-convexity of (5) include [4, 6,
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3, 7].
[4] considered the image deblurring problem with an `1/`2 penalty on the objective. Here, the authors

described the `1/`2 penalty as a normalized `1 norm and propose a reweighed algorithm that alternates
between updates on x, w, and z := ‖x‖2. [6] formulated the `1/`2 in the constraint and lifted the problem
to a semidefinite programming. They also employed a special treatment to deal with exponentially growing
number of linear constraints. Another approach by [3] and [7] focuses on smoothing the `1/`2 norm at the
origin by replacing it with a majorant function with parameterizable smoothness. However, in the case with
multiple observation traces, this method is susceptible to over-regularizing particular model traces xi that
have a relative small `2 norm.

In this paper, we introduce the first denoising version of the blind deconvolution problem where the `1
over `2 norm appear in conjunction with a data constraint. Moreover, our formulation is flexible enough
to include other constraints on the model (such as bounds on `2 norms of w) or to solve penalty-based
formulations such as (5).

Our idea is to use a splitting technique separating x into positive and negative parts, which enables the
use of the method of multipliers. To describe our method, We start with the following feasibility formulation:

‖ŷ − ŵ � x̂+ ŷ � x̂‖2 ≤ ε
‖x‖1/‖x‖2 ≤ k
w = Bh, (6)

where ŵ stands for the Fourier coefficients, � for the pointwise product of two vectors. The parameter k
represents prior knowledge on the effective sparsity and B = [I, 0]T restricts the wavelet to a predefined time
interval. Using this formulation, one can easily check whether the algorithm is stuck at a local minimum by
examining if all its constraint are satisfied. The obvious drawback of this formulation is its reliance on the
estimate of k.

For a given k and (6), we rearrange the constraint ‖x‖1/‖x‖2 ≤ k to ‖x‖21 ≤ k2‖x‖22, and split x into
positive and negative parts x = x+ − x−, with an additional constraint 〈x+, x−〉 = 0 to ensure that the two
parts do not overlap. With these manipulations, we arrive at

‖ŷ − ŵ � (x̂+ − x̂−) + ŷ � (x̂+ − x̂−)‖2 ≤ ε
〈x+, x−〉 = 0

(
∑

x+ +
∑

x−)2 − k2‖x+ − x−‖22 ≤ 0

x−, x+ ≥ 0

w = Bh. (7)

Notice that (7) can be represented linearly by the entries of the following rank 1 matrix
w
x+
x−
1

 [wT xT+ xT− 1
]

=


wwT wxT+ wxT− w
x+w

T x+x
T
+ x+x

T
− x+

x−w
T x−x

T
+ x−x

T
− x−

wT xT+ xT− 1

 .
Although (3) can be solved directly by the method of multipliers, this approach is ineffective at resolving
issues with problematic local minima that arises from its non-convexity. However, a lifting approach similar
to that used in [2] to expand the search space of the model could be applied. We replace the outer product
of the two identical vectors with two identical low-rank matrices to expand the space of search directions
(note that we cannot get a rank one solution unless an extra low-rank penalty is added.) Concretely, suppose
w, x, y ∈ RN , we lift these vectors to rank r matrices and solve the following optimization problem:

5



min
R1,··· ,R4

Trace(X)− ‖X‖F subject to (8)

‖ŷ − diag(R̂1R̂2
T
− R̂1R̂3

T
) + ŷ � (R̂2R̂4

T
− R̂3R̂

T
4 ))‖2 ≤ ε

Trace(R2R
T
3 ) = 0

1T (R2R
T
2 +R3R

T
3 + 2R3R

T
2 )1− k2Trace(R2R

T
2 +R3R

T
3 ) ≤ 0

R4R
T
1 (BBT − I) = 0

R4R
T
2 , R4R

T
3 ≥ 0

R4R
T
4 = 1,

where R1, R2, R3 ∈ RN,r and R4 ∈ R1,r. The matrix R̂1 contains the Fourier transform for each column of
R1 and the vector 1 contains all ones, I is the identity matrix, and

X =


R1

R2

R3

R4

 [RT1 RT2 RT3 RT4
]
.

Since k is not always known, we can also move the sparse penalty to the objective and solve

min
R1,··· ,R4

λ(Trace(X)− ‖X‖F ) + log[1T (R2R
T
2 +R3R

T
3

+ 2R3R
T
2 )1]− log[Trace(R2R

T
2 +R3R

T
3 ))]. (9)

Equations (8) and (9) are special cases of

min
x
F (x) subject to hi(x) ∈ Ci

with Ci convex and F and hi differentiable with Lipschitz continuous gradients, so the method of multipliers
applies.

4 Numerical Experiments

Systems without feedback are less sensitive to initialization because their ambiguity forms a plane consisting
of shift and scalings. Systems with feedback, on the other hand, are more challenging to initialize because
the existence of multiples effectively shrinks the degrees of freedom of the minimizers. Consequently, we
need to be more careful and refrain from biasing the system by initializing the kernel with zeros. This is to
be preferred over initializing with a kernel of the wrong scaling and/or location and fits our goal of lessening
reliance on priors.

In our experiment, we discretized the real axis with a grid separated by ∆t = 0.004s and we subsequently
generate a sparse signal of 1.2 seconds by setting each of the entries to 0 with probability 0.97. The
amplitude of each nonzero element is i.i.d. uniform on [-0.2,0.2]. This box constraint ensures convergence
of the feedback system but is not requirement for the algorithm itself. The kernel function is assumed to
be the Ricker wavelet with peak frequency at 20Hz. We restrict the wavelet support to 0-0.2s during the
reconstruction, and use 0’s for its initial guess. We initialize x also with zeros, except that we made x+, x−
nonzero to make sure that the initial gradient is not zero. For the lifted problem, we initialize R1 to R4 by
replicating the aforementioned vectors over r columns.
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Figure 2: (a) True wavelet, (b) True signal, (c) Spectrum of the wavelet measured in dB, (d) Data record
with feedback.
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(d) rank 4

Figure 3: Reconstruction of x using (9) with λ = 5× 104. One rank is added after every 20 iterations of the
outer loop of the method of multipliers.
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5 Appendix

Proof of Theorem 2.1. Let � and � denote the pointwise multiplication and division, respectively. The
assumption x,w ∈ L1 implies the following facts

1. w ⊗ x⊗k ∈ L1(R) for any integer k;

2. ŵ � x̂�k exists everywhere;

3.

‖y‖1 ≤
∞∑
k=1

‖w ∗ x⊗k‖1 ≤ ‖w‖1
∞∑
k=1

‖x‖k1 ≤
‖w‖1‖x‖1
1− ‖x‖1

;

4. ‖x̂‖∞ ≤ ‖x‖1 < 1;

5. the infinity series converges

∞∑
k=1

(−1)k−1ŵ � x̂�k = ŵ � x̂� (1− x̂); (10)

6.

‖ŵ � x̂� (1− x̂)‖1 ≤
‖x̂‖∞

1− ‖x̂‖∞
‖ŵ‖1 ≤

‖x‖1
1− ‖x‖1

‖ŵ‖1;

7.
y = F−1(ŵ � x̂� (1− x̂)).

where F−1 is the inverse Fourier transform operator.
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These results ensure that the Fourier domain representation of the feedback system (3) obeys

ŷ = ŵ � x̂− x̂� ŷ. (11)

We examine whether a simple scaling of w will lower the `1 norm of the corresponding x. For this purpose,
let v(α) := αw be a scaling of w, and defined z(α) to be the reflectivity whose convolution with v(α) is

consistent with the data, i.e., (v̂(α), ẑ(α)) satisfies (11). Clearly, given v(α) = αw, the expression of z(α)
can be solved as

ẑ(α) = ŷ � (v̂(α)− ŷ) = x̂� (α+ x̂(α− 1)). (12)

The true solution corresponds to α = 1, i.e., z(1) = x.
If the statement of theorem is not true, then ‖zα‖1 has a local minimum w.r.t. α at α = 1. Hence to

prove the theorem, we only need to show that there is no local minimum at this point.
Since the scaling operator is continuous, there is a neighborhood U of 1 such that z(α) is smooth in U .

One can also verify that the second order derivative |z′′(α)| ≤M is bounded in U and the Taylor expansion
of z at α = 1 has the form

z(α) =

∞∑
k=0

(−1)kx⊗ (δ + x)⊗kαk.

where δ is the delta distribution at 0.
Now assume on the contrary that ‖zα‖1 ≥ ‖x‖1 for any α ∈ U ∩ [1,∞). It means that we have

‖x‖1 ≤ ‖zα‖1 = ‖x+ (zα − z1)‖1 =

∫
sign(zα)(x+ (zα − z1))dt

≤ ‖x‖1 +

∫
sign(zα)(zα − z1)dt.

Here the sign function is defined to be the sign of the input if it is nonzero and to be 0 otherwise. Canceling
the ‖x‖1 on both sides to obtain ∫

sign(zα)(zα − z1)dt ≥ 0, ∀α.

Inserting (12) to the above and divide both sides by 1− α, it becomes∫
sign(zα)F−1((x̂+ x̂� x̂)� (α+ x̂(α− 1)))dt ≤ 0.

Let α approaches 1 and bring the limit inside (the interchangeability of the limit and integral sign is due to
the dominated convergence theorem), we get∫

sign(x)(x+ x ∗ x) =

∫
sign(z1)z′(1)dt ≤ 0

This implies
‖x‖1 − ‖x‖21 ≤ 0,

which contradicts to the assumption that ‖x‖1 < 1.

Proof of Theorem 2.2. WLOG, assume α ∈ [1,∞) (the proof for α ≤ 1 follows the same line of argument).
We prove the result by contradiction. Suppose α = 1 is not a local minimizer, then for any δ > 1, there
exists α < δ, such that

‖z(α)‖1
‖z(α)‖2

≤ ‖x‖1
‖x‖2

.

This further means that there exists a sequence αn → 1 such that

lim
n→∞

‖z(αn)‖21‖x‖22 − ‖z(αn)‖22‖x‖21
αn − 1

≤ 0. (13)
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As above, writing z(α) = x+ z(α)− z(1), it can be verified that the (13) is equivalent to

lim
n→∞

1

αn − 1
(‖x‖1‖x‖22〈sign(z(α)), z(α)− z(1)〉+ |〈z(α)− z(1), sign(z(α))〉|2‖x‖22 (14)

− ‖z(α)− z(1)‖22‖x‖21 − 2〈z1, z(α)− z1〉‖x‖21) ≤ 0.

Using the facts that

lim
α→1+

z(α)− z(1)

α− 1
= x+ x⊗ x,

and
lim
α→1

sign(z(α)T ) = sign(x+ x⊗ x) (15)

where T = supp(x+ x⊗ x) and z(α)T denotes the vector z(α) restricted to the set T , (14) becomes

2‖x‖1‖x‖22(‖x‖1 + ‖x‖21)− 2‖x‖21‖x‖22 ≤ 0,

which cannot be true, hence we arrive at a contradition. Note that in (15) we have used the assumption
that supp(x) ∩ supp(x⊗ x) = ∅.
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