Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2017 SLIM group @ The University of British Columbia.

An efficient penalty method for PDE-constrained optimization problem with source estimation and stochastic optimization

Zhilong Fang*, Curt Da Silva* and Felix J. Herrmann* *Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

Consider the following problem:

where $\mathbf{m} \in \mathcal{C}^{n_{\mathrm{m}}}$

Consider the following problem:

where $\mathbf{m} \in \mathcal{C}^{n_{\mathrm{m}}}$

Challenge: $n_{\rm m}$ and N are large

Inverse problem in seismic exploration

- $\mathcal{O}(10^{12})$ data
- $\mathcal{O}(10^9)$ parameters

Questions: 1. How can we reduce the computational cost?

Data

Wrong source wavelet

Wrong gradient

Questions: 1. How can we reduce the computational cost?

2. How can we obtain the correct source wavelets?

[Tarantola, 1984]

[J. Virieux and S. Operto, 2009]

Full-waveform inversion

PDE-constrained optimization problem:

where $N = N_{\rm src} N_{\rm freq}$

$\min_{\mathbf{u},\mathbf{m}} \frac{1}{2N} \sum_{i=1}^{N_{\text{src}}} \sum_{l=1}^{N_{\text{freq}}} \|\mathbf{P}_{i}\mathbf{u}_{i,l} - \mathbf{d}_{i,l}\|_{2}^{2}$ subject to $\mathbf{A}_{i,l}(\mathbf{m})\mathbf{u}_{i,l} = \mathbf{q}_{i,l}$

[Tarantola, 1984] [J. Virieux and S. Operto, 2009]

Full-waveform inversion

Reduced/adjoint-state method: $\min_{\mathbf{m}} \frac{1}{2N} \sum_{i=1}^{N_{\text{src}}} \sum_{l=1}^{N_{\text{freq}}} \|\mathbf{P}_{i}\mathbf{A}_{i,l}(\mathbf{m})^{-1}\mathbf{q}_{i,l} - \mathbf{d}_{i,l}\|_{2}^{2}$ with the gradient given by $\mathbf{g} = \frac{1}{N} \sum_{i=1}^{N}$ $\mathbf{u}_{i,l} = \mathbf{A}_{i,l}$ $\mathbf{v}_{i,l} = -\mathbf{A}_i$ $\mathbf{r}_{i,l} = \mathbf{P}_i A$

$$\sum_{k=1}^{N_{\rm src}} \sum_{l=1}^{N_{\rm freq}} \mathbf{u}_{i,l}^{\top} \frac{\partial \mathbf{A}_{i,l}^{\top}}{\partial \mathbf{m}} \mathbf{v}_{i,l}$$

$$= (\mathbf{m})^{-1} \mathbf{q}_{i,l}$$

$$= \sum_{i,l}^{-\top} (\mathbf{m}) \mathbf{P}_{i}^{\top} \mathbf{r}_{i,l}$$

$$= \sum_{i,l}^{-\top} (\mathbf{m})^{-1} \mathbf{q}_{i,l} - \mathbf{d}_{i,l}$$

$$= \sum_{i,l}^{-\top} (\mathbf{m})^{-1} \mathbf{q}_{i,l} - \mathbf{d}_{i,l}$$

[van Leeuwen, T and Herrmann, F J, 2013] [Peters, B, Herrmann, F J and van Leeuwen, T, 2014] [Golub, G H and Pereyra, V, 2003]

Wavefield-reconstruction inversion

Penalty method:

$$\min_{\mathbf{u},\mathbf{m}} \frac{1}{2N} \sum_{i=1}^{N_{\text{src}}} \sum_{l=1}^{N_{\text{freq}}} \|\mathbf{P}_{i}\mathbf{u}_{i,l}\|$$

Eliminating **u** w/variable projection:

$$\overline{\mathbf{u}} = \arg\min_{\mathbf{u}} \frac{1}{2N} \sum_{i=1}^{N_{\rm src}} \sum_{l=1}^{N_{\rm fre}}$$

$$-\mathbf{d}_{i,l}\|_{2}^{2} + \lambda^{2} \|\mathbf{A}_{i,l}(\mathbf{m})\mathbf{u}_{i,l} - \mathbf{q}_{i,l}\|_{2}^{2}$$

 \mathbf{q} $\|\mathbf{P}_{i}\mathbf{u}_{i,l} - \mathbf{d}_{i,l}\|_{2}^{2} + \lambda^{2} \|\mathbf{A}_{i,l}(\mathbf{m})\mathbf{u}_{i,l} - \mathbf{q}_{i,l}\|_{2}^{2}$

[van Leeuwen, T and Herrmann, F J, 2013] [Golub, G and Pereyra, V, 2003]

Wavefield-reconstruction inversion

Corresponds to solving the following augmented system:

 $\left(egin{array}{c} \lambda \mathbf{A}_{i,l} \ \mathbf{P}_{i} \end{array}
ight) \overline{\mathbf{u}}_{i,l}$

with the gradient

$$= egin{pmatrix} \lambda \mathbf{q}_{i,l} \ \mathbf{d}_{i,l} \end{pmatrix}$$

1 augmented system solves is required !

True & initial model

Initial model

[van Leeuwen, T and Herrmann, F J, 2013] [Peters, B, Herrmann, F J and van Leeuwen, T, 2014]

FWI vs WRI

Result FWI

Result WRI, $\lambda = 1$

[van Leeuwen, T and Herrmann, F J, 2013] [Peters, B, Herrmann, F J and van Leeuwen, T, 2014]

Triple parameters optimization problem:

Triple parameters optimization problem:

$$\min_{\mathbf{u},\mathbf{m},\alpha} \frac{1}{2N} \sum_{i=1}^{N_{\text{src}}} \sum_{l=1}^{N_{\text{freq}}} \|\mathbf{P}_{i}\mathbf{u}_{i,l} - \mathbf{d}_{i,l}\|_{2}^{2} + \lambda^{2} \|\mathbf{A}_{i,l}(\mathbf{m})\mathbf{u}_{i,l} - \alpha_{i,l}\mathbf{e}_{i,l}\|_{2}^{2}$$

Eliminate **u** and α jointly w/variable projection:

$$[\overline{\mathbf{u}}, \overline{\alpha}] = \arg\min_{\mathbf{u}, \alpha} \frac{1}{2N} \sum_{i=1}^{N_{\text{src}}} \sum_{l=1}^{N_{\text{freq}}} \|\mathbf{P}_{i} \mathbf{u}_{i,l} - \mathbf{d}_{i,l}\|_{2}^{2} + \lambda^{2} \|\mathbf{A}_{i,l}(\mathbf{m})\mathbf{u}_{i,l} - \alpha_{i,l}\mathbf{e}_{i,l}\|_{2}^{2}$$

Corresponds to solving the following augmented system:

$$\begin{pmatrix} \lambda \mathbf{A}_{i,l} & -\lambda \mathbf{e}_{i,l} \\ \mathbf{P}_i & 0 \end{pmatrix} \begin{pmatrix} \overline{\mathbf{u}}_{i,l} \\ \overline{\alpha}_{i,l} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{d}_{i,l} \end{pmatrix}$$

Cf. original augmented system:

$$egin{pmatrix} \lambda \mathbf{A}_{i,l} \ \mathbf{P}_i \end{pmatrix}$$

Full column rank! No additional computational cost!

$$\overline{\mathbf{u}}_{i,l} = \begin{pmatrix} \lambda \mathbf{q}_{i,l} \\ \mathbf{d}_{i,l} \end{pmatrix}$$

Synthetic example

True Model

Initial Model

Gradient comparison

Gradient with true source wavelet

Gradient with wrong source wavelet

Gradient comparison

Gradient with true source wavelet

Gradient with estimated source wavelet

Objective function:

$arphi(\mathbf{m}) = rac{1}{2N} \sum_{i=1}^{N_{ m src}} \sum_{l=1}^{N_{ m freq}} \|\mathbf{P}_i \overline{\mathbf{u}}_i\|$ $\lambda^2 \|\mathbf{A}\|$

with

$$\begin{pmatrix} \lambda \mathbf{A}_{i,l} & -\lambda \mathbf{e}_{i,l} \\ \mathbf{P}_i & 0 \end{pmatrix} \begin{pmatrix} \overline{\mathbf{u}}_{i,l} \\ \overline{\alpha}_{i,l} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{d}_{i,l} \end{pmatrix}$$

$$\mathbf{ar{u}}_{i,l}(\mathbf{m}) - \mathbf{d}_{i,l} \|_2^2 +$$

$$\mathbf{A}_{i,l}(\mathbf{m})\mathbf{\overline{u}}_{i,l}(\mathbf{m}) - \alpha_{i,l}(\mathbf{m})\mathbf{e}_{i,l}\|_2^2$$

[Nesterov, 2004]

WRI with source estimation

Objective function:

$\varphi(\mathbf{m}) = \frac{1}{2N} \sum_{i=1}^{N_{\rm src}} \sum_{l=1}^{N_{\rm freq}} \|\mathbf{P}_i \overline{\mathbf{u}}\|$ $\lambda^2 \| \mathbf{A} \|$

with

$$\begin{pmatrix} \lambda \mathbf{A}_{i,l} & -\lambda \mathbf{e}_{i,l} \\ \mathbf{P}_i & 0 \end{pmatrix} \begin{pmatrix} \overline{\mathbf{u}}_{i,l} \\ \overline{\alpha}_{i,l} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{d}_{i,l} \end{pmatrix}$$

$$\mathbf{\bar{u}}_{i,l}(\mathbf{m}) - \mathbf{d}_{i,l} \|_2^2 +$$

$$\mathbf{A}_{i,l}(\mathbf{m})\overline{\mathbf{u}}_{i,l}(\mathbf{m}) - lpha_{i,l}(\mathbf{m})\mathbf{e}_{i,l}\|_2^2$$

expensive ~ one PDE solve

Stochastic optimization Full objective function: $\min_{\mathbf{m}} \varphi(\mathbf{m}) = \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{m})$ Full gradient (FG):

Challenge:

- *N* is large

• computing $\{f_i(\mathbf{m})\}_{1 \le i \le N}$ and $\{g_i(\mathbf{m})\}_{1 \le i \le N}$ are expensive

[Nesterov, 2004]

Stochastic optimization Full gradient method:

$$\mathbf{m}^{k+1} = \mathbf{m}^k - \alpha_k G(\mathbf{r})$$

Linear convergence rate:

$$\varphi(\mathbf{m}^k) - \varphi(\mathbf{n}^k)$$

for some
$$\rho < 1$$

 $\mathbf{m}^*) = \mathcal{O}(\rho^k)$

[Nemirovski and Yudin, 1983] [Nemirovski et al., 2009] [Agarwal *et al.*, 2012]

Stochastic optimization

Stochastic objective function:

Stochastic gradient (SG):

[Nemirovski and Yudin, 1983] [Nemirovski *et al.,* 2009] [Agarwal *et al.,* 2012]

Stochastic optimization

Stochastic gradient method:

$$\mathbf{m}^{k+1} = \mathbf{m}^k$$

Sublinear convergence rate:

 $\mathbb{E}[\varphi(\mathbf{m}^k)] - \varphi(\mathbf{m}^*) = \mathcal{O}(1/k)$

[Schmidt 2013]

Full gradient method:

Stochastic gradient method:

[Schmidt 2013]

FG vs SG

Convergence comparison: • FG method has O(N) cost with $\mathcal{O}(\rho^k)$ rate;

- SG method has O(1) cost with O(1/k) rate;

[Schmidt 2013]

FG vs SG

Convergence comparison: • FG method has O(N) cost with $\mathcal{O}(\rho^k)$ rate;

- SG method has O(1) cost with O(1/t) rate;

Stochastic WRI

Stochastic objective function: $\overline{\varphi}(\mathbf{m}) =$

with

$$f_i(\mathbf{m}) = \frac{1}{2N_{\text{freq}}} \sum_{l=1}^{N_{\text{freq}}} \|\mathbf{P}_i \overline{\mathbf{u}}_{i,l}(\mathbf{m})\|$$

Stochastic gradient:

 $\overline{G}_k(\mathbf{m}) =$

$$\frac{1}{n_{\mathcal{I}_k}} \sum_{i \in \mathcal{I}_k} f_i(\mathbf{m})$$

 $\mathbf{m}) - \mathbf{d}_{i,l} \|_2^2 + \lambda^2 \|\mathbf{A}_{i,l}(\mathbf{m}) \overline{\mathbf{u}}_{i,l}(\mathbf{m}) - \alpha_{i,l}(\mathbf{m}) \mathbf{e}_{i,l} \|_2^2$

$$= \frac{1}{n_{\mathcal{I}_k}} \sum_{i \in \mathcal{I}_k} g_i(\mathbf{m})$$

Stochastic WRI

Stochastic I-BFGS:

$$\mathbf{m}^{k+1} = \mathbf{m}^k - \alpha$$

where $\overline{H}_k(\mathbf{m}^k)$ is the I-BFGS Hessian

$\chi_k \overline{H}_k^{-1}(\mathbf{m}^k) \overline{G}_k(\mathbf{m}^k)$

BG model

35

BG model

- , 5
- 4.5
- 4

Inversion information:

Batch size: 15

Optimization Solver: I-BFGS

Iterations per frequency band: 21

- 3.5
- 3
- 3
- 2.5
- 2
- 1.5

Inversion results

full data w/ true source wavelet

batch data w/ estimated source wavelet

km/s

Convergence comparison

6x speed up

Source wavelet comparison

Chevron blind test data

Chevron blind test data

Data-set information:

- 1. 1600 shots:
- 3. Maximum offset = 8000 m;
- 4. Record time = 8.0 s, sample rate 4 ms;
- 5. Vp water = constant = 1510 m/s;
- 6. With free surface multiples present in the data;
- 7. Isotropic Elastic.

Chevron blind test data

Inversion strategy:

- 1. Frequency domain WRI with Source estimation;
- 2. Frequency bands: [3:0.2:5]Hz, [3:0.2:7]Hz, [3:0.2:9]Hz, [3:0.2:11]Hz, [3:0.2:19]Hz;
- 3. Batch sizes of random frequency subsets: 3, 6, 10, 10, 15;
- 4. Batch size of random source subsets: 300;
- 5. Optimization solver: I-BFGS with 20 iterations per frequency band;
- 6. 4 passes of WRI at frequency 3-11 Hz and 1 pass to 19 Hz;
- 7. Grid size: 20m for 3-11Hz and 12m for 3-19Hz;
- 8. No pre-processing !!!

Data comparison — 3 Hz Data of 800th shot

Data comparison — 3 Hz Data of 800th shot

Initial model

Lateral [km]

Inversion result

Lateral [km]

Source wavelet comparison

Well-log comparison

Lateral [km]

Well-log comparison

Conclusion

Stochastic WRI with source estimation:

- dimensionality reduction select subsets of sources and frequencies randomly
- source estimation reconstruct the wavefields and source wavelets by variable projection method
- numerical examples speed up the inversion with a factor of at least 6 and invert the unknown model without additional prior information about the source wavelets

Reference

Reviews of Geophysics 20 (2): 219-232, 1982.

Jean Virieux and Stéphane Operto. An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6):WCC1–WCC26, 2009.

Inverse Problems, 32(1):015007, 12 2015.

Inverse problems, 19 (2): R1, 2003.

Yurii Nesterov. Introductory lectures on convex optimization. Springer, 2004.

optimization. 1983.

the oracle complexity of convex optimization. Advances in Neural Information Processing Systems: 1-9, 2009.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average gradient. *Mathematical Programming*: 1-30, 2013.

- Albert Tarantola, and Bernard Valette. Generalized nonlinear inverse problems solved using the least squares criterion.
- Tristan van Leeuwen and Felix J. Herrmann. Mitigating local minima in full-waveform inversion by expanding the search space. *Geophysical Journal International*, 195:661–667, 10 2013.
- Tristan van Leeuwen and Felix J. Herrmann. A penalty method for PDE-constrained optimization in inverse problems.
- Bas Peters, Felix J. Herrmann and Tristan van Leeuwen. Wave-equation based inversion with the penalty method: adjoint-state versus wavefield-reconstruction inversion. *EAGE*, 2014.
- Gene Golub and Victor Pereyra. Separable nonlinear least squares: the variable projection method and its applications.
- Arkadii Nemirovskii, David Borisovich Yudin, and Edgar Ronald Dawson. Problem complexity and method efficiency in
- Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM Journal on optimization*, 19 (4): 1574-1609, 2009.
- Alekh Agarwal, Martin J. Wainwright, Peter L. Bartlett, and Pradeep K. Ravikumar. Information-theoretic lower bounds on

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

