
Felix J. Herrmann*
fherrmann@eos.ubc.ca

Joint work with Yogi Erlangga, and Tim Lin

*Seismic Laboratory for Imaging & Modeling
Department of Earth & Ocean Sciences
The University of British Columbia

Vienna July 20, 2009

Compressive seismic imaging with 
simultaneous acquisition

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2009 SLIM group @ The University of British Columbia.

mailto:ghennenfent@eos.ubc.ca
mailto:ghennenfent@eos.ubc.ca


Seismic Laboratory for Imaging and Modeling

image courtesy ION (www.iongeo.com)

Seismic acquisition

http://www.iongeo.com
http://www.iongeo.com


Individual shots



Individual shots



Seismic Laboratory for Imaging and Modeling

After imaging
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Observations
 Seismic imaging methods are mostly based on linearizations

 Seismic imaging methods are despite the spectral gap able to 
– locate major singularities
– assign some sense of reflection strength

 Seismic images 
– are derived from multiexperiment data (petabytes) <=> redundancy
– permit sparse representation by multiscale & multidirection transforms that 

capture the “wavefront set” of the subsurface reflectors (e.g. curvelets)

 Seismic images do not capture the whole picture!

 There is a push for full waveform inversion ...
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Seismic imaging & inversion

Multiexperiment PDE-constrained optimization problem:

min
U∈U ,m∈M

1
2
‖P−DU

∥∥2

2
subject to H[m]U = Q

+ Free surface BC

P = Total multi-source and multi-frequency data volume
D = Detection operator
U = Solution of the Helmholtz equation
H = Discretized multi-frequency Helmholtz system
Q = Unknown seismic sources
m = Unknown model, e.g. c−2(x)
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Wavefield simulations
Based on discretization of the Helmholtz equation:

      
          frequency sample interval

Hωj := H(ωj), ωj = 2πj∆f, j = 1, . . . , nf

∆f

Hu = −∆u− ω2mu = q
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. . .
. . . . . . 0
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Uω1︷ ︸︸ ︷
[u1 u2 · · · uns ]ω1

...

...
[u1 u2 · · · uns ]ωnf︸ ︷︷ ︸

Unf





=





Qω1︷ ︸︸ ︷
[q1 q2 · · · qns

]ω1

...

...
[b1 b2 · · · bns ]ωnf︸ ︷︷ ︸

Qnf
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Adjoint state methods [Plessix ‘06 & many others]

For each separate source q solve the unconstrained problem:

where model updates <=> migrated image

involve single implicit solves of Helmholtz system

with

with

H[m]u = q and H∗[m]v = r

F [m,q] = DH−1[m]q

r = DH(p− F [m])

δm = !
(

∑

ω

ω2
∑

s

ū" v

)
= K∗[m,Q]δd

with δd = vec(P−F [m,Q])

min
m∈M

1
2
‖p− F [m]‖2

2
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Challenges: there are many ...
Helmholtz system is indefinite & ill conditioned => lack of convergence 
indirect Krylov solvers

Multiexperiment setup with multiple right-hand-sides is computationally 
prohibitive as part of iterative Newton methods

Inversion problem can be both over- and underdetermined [Symes, ‘09]
• data cannot be explained fully
• there are local minima
• many velocity models may explain data within some error

Proposed ideas to tackle multimodality by extensions & focusing make 
the situation worse by additional degrees of freedom
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Indirect solver
Preconditioner [Erlangga, Oosterlee, Vuik, 2006]

Deflation operator [Erlangga, Nabben, ‘08, FJH, Erlangga, ‘08]

 with:

                       multigrid-type interpolation matrices 

Similar computational complexity as TDFD ...

M ∧=
(
−∆− (1− β î)ω2m

)

h
, β = (0, 1]

Q := I− ZE−1Y"HM−1 − ZE−1Y"

E = Y!HM−1Z

Z,Y
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Behavior eigenvalues

H HM−1 HM−1Q

Clustering around one

1D non-constant wavenumber k, hard model

For constant, smooth, or hard 
model, one can expect the same 
convergence rate

k = (50, 100)
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Challenges: there are many ...
Helmholtz system is indefinite & ill conditioned => lack of 
convergence indirect Krylov solvers

Multiexperiment setup with multiple right-hand-sides is computationally 
prohibitive 

Inversion problem can be both over- and underdetermined
• data cannot be explained fully
• there are local minima
• many velocity models may explain data within some error

Proposed plans to tackle multimodality by extensions & focusing 
make the situation worse by additional degrees of freedom

✓
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System-size reduction
 Apply CS to reduce cost of wavefield simulation with Helmholtz 

– use simultaneous sources instead of separated sources
– leverage transform-domain sparsity & randomized subsampling by one-norm 

sparsity promotion
– reduce size Helmholtz system

• sources (number of right-hand sides)
• angular frequencies (number of blocks)

 Apply CS to reduce cost of computing image volumes by multi-
dimensional correlations via explicit matrix-matrix multiplies

– randomize and subsample wavefields in model space
– leverage transform-domain sparsity and focusing in the model space by joint 

sparsity promotion with mixed (1,2) norms
– reduce costs of storage and explicit matrix-matrix multiplies

• sources (right-hand sides), receivers, depth
• angular frequencies (blocks)
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Relation to existing work
 Simultaneous & continuous acquisition:

– Efficient Seismic Forward Modeling using Simultaneous Random Sources and 
Sparsity by N. Neelamani and C. Krohn and  J. Krebs and M. Deffenbaugh and J. 
Romberg, ‘08

 Simultaneous simulations & migration:
– Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.
– Phase encoding of shot records in prestack migration by Romero et. al., ’00.

 Imaging:
– How to choose a subset of frequencies in frequency-domain finite-difference 

migration by Mulder & Plessix, ’04.
– Efficient waveform inversion and imaging: A strategy for selecting temporal 

frequencies by Sirque and Pratt, ’04.

 Full-waveform inversion:
– 3D prestack plane-wave, full-waveform inversion by Vigh and Starr, ‘08

 Wavefield extrapolation:
– Compressed wavefield extrapolation by T. Lin and F.J.H, ’07
– Compressive wave computations by L. Demanet (SIA ’08 MS79 & Preprint)
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Tools
 Compressive sensing based on Johnson-Lindenstrauss embeddings

– Compressive sensing [Donoho, 06‘, Candes, Romberg, Tao, ‘06]

 Fast matrix computations based on Johnson-Lindenstrauss embeddings
– Improved Approximation Algorithms for Large Matrices via Random Projections by Tamás 

Sarlós, ’08

 Joint sparsity-promotion with mixed (1,2) norm minimization
– Joint-sparse recovery from multiple measurements by E. van den Berg and M. Friedlander, ‘09

X̃ = arg min
X

‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ,

b = RMx
x̃ = arg min

x
‖x‖1 subject to ‖RMx− b‖2 ≤ σ

x̃ ≈ x

[randomized subsampling]

AB ≈ A (RM)∗ (RM)B



Simultaneous & continuous sources
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Subsample along source and frequency coordinates
Use fast transform-based sampling algorithms such as scrambled Fourier 
[Romberg, ‘08] or Hadamard ensembles [Gan et. al., ‘08]

– Different random restriction for each                  simultaneous experiments
– Restriction reduces system size

θw = Uniform([0, 2π])

RM =

sub sampler︷ ︸︸ ︷



RΣ
1 ⊗ I⊗RΩ

1

...

RΣ
ns′ ⊗ I⊗RΩ

ns′





random phase encoder︷ ︸︸ ︷(
F∗

2 diag
(
eîθ

)
⊗ I

)
F3, (3)

where F2,3 are the 2,3-D Fourier transforms, and where θ = Uniform([0, 2π]) is a random

phase rotation. Notice that the F2 and phase rotations act along the source/receiver coor-

dinates. Application of this CS-sampling matrix, RM, to the original source wavefields in

s turns these single shots into a subset (n′
s " ns) of time-harmonic simultaneous sources

that are randomly phase encoded and that have for each simultaneous shot a different set of

angular frequencies missing—i.e., there are n′
f " nf frequencies non-zero (see Figure 2(a)).

Because seismic data is bandwidth limited, we sample with a probability that is weighted

by the power spectrum of the source wavelet. The advantage of this implementation is that

it is matrix-free, fast, and it turns interferences into harmless noise (see Figure 2(b)).

The sparsfying transform: Aside from proper CS sampling the recovery from simulta-

neous simulations depends on a sparsifying transform that compresses seismic data, is fast,

and reasonably incoherent with the CS sampling matrix. We accomplish this by defining

the sparsity transform as the Kronecker product between the 2-D discrete curvelet trans-

form (Candès et al., 2006) along the source-receiver coordinates, and the discrete wavelet

transform along the time coordinate—i.e., S := C ⊗W with C, W the curvelet- and

wavelet-transform matrices, respectively.

8

System-size reduction [FJH, Lin, and Erlangga, ‘09] 

n′
s ! ns



R MH-1

R M H-1
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 Use fast discrete 2-D Curvelet transform based on wrapping along 
shot and receiver coordinates

– compresses highly geometrical features of monochromatic wavefields 
– incoherent with compressive-sampling matrix that acts along the source coordinate

 Use fast discrete wavelet transform along the time coordinate
– compresses front-like features arriving along the time direction
– reasonable incoherent with sampling of angular frequencies

 Combine both transforms through a Kronecker product

S = C2d ⊗W

Sparsifying transform [Demanet ‘06] 



simple model complex model

Velocity models



Green’s functions



300 SPGL1 iteration

18.2dB28.1dB

Recovered data
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Observations & outlook
 CS provides a linear sampling paradigm 

– breaks subsampling-related coherent interferences by turning them into harmless 
noise

– degree of subsampling commensurate with transform-domain sparsity
– subsampling of solutions to PDEs

 Works as long as recovery costs are smaller than simulation-cost 
reductions

 Robust (via sparsity promotion) instance of exploiting invariance = 
“sparsity conservation” of multiscale transform under certain 
solution operators

 Bottom line: numerical modeling costs are no longer determined 
by the size of the discretization but by transform-domain 
compressibility of the solution ...
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Challenges: there are many ...
Helmholtz system is indefinite & ill conditioned => lack of 
convergence indirect Krylov solvers

Multiexperiment setup with multiple right-hand-sides is computational 
prohibitive 

Inversion problem can be both over- and underdetermined
• data cannot be explained fully
• there are local minima
• many velocity models may explain data within some error

Proposed plans to tackle multimodality by extensions & focusing 
make the situation worse by additional degrees of freedom

✓

±✓
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System-size reduction
 Apply CS to reduce cost of wavefield simulation with Helmholtz 

– use simultaneous sources instead of separated sources
– leverage transform-domain sparsity & randomized subsampling by one-norm 

sparsity promotion
– reduce size Helmholtz system

• sources (number of right-hand sides)
• angular frequencies (number of blocks)

 Apply CS to reduce cost of computing image volumes by multi-
dimensional correlations via explicit matrix-matrix multiplies

– randomize and subsample wavefields in model space
– leverage transform-domain sparsity and focusing in the model space by joint 

sparsity promotion with mixed (1,2) norms
– reduce costs of storage and explicit matrix-matrix multiplies

• sources (right-hand sides), receivers, depth
• angular frequencies (blocks)
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Tools
 Compressive sensing based on Johnson-Lindenstrauss embeddings

– Compressive sensing [Donoho, 06‘, Candes, Romberg, Tao, ‘06]

 Fast matrix computations based on Johnson-Lindenstrauss embeddings
– Improved Approximation Algorithms for Large Matrices via Random Projections by Tamás 

Sarlós, ’08

 Joint sparsity-promotion with mixed (1,2) norm minimization
– Joint-sparse recovery from multiple measurements by E. van den Berg and M. Friedlander, ‘09

X̃ = arg min
X

‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ,

b = RMx
x̃ = arg min

x
‖x‖1 subject to ‖RMx− b‖2 ≤ σ

x̃ ≈ x

[randomized subsampling]

AB ≈ A (RM)∗ (RM)B
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Differential semblance
 Invoke physical principle of focusing [Claerbout & many others] <=> 

mathematical principle of extensions [Symes]

 Motivated by Symes’ differential semblance principle [Symes ‘09]: 
“Amongst all possible quadratic forms in the data, parameterized by 
velocity, of the form

only differential semblance is smooth jointly as function of smooth 
perturbations in velocity and finite energy perturbations in data [Stolk 
& Symes, ’03]”

 Forms the basis of nonlinear migration velocity analysis on 
linearized data [Symes, ‘09].

with

annihilator︷ ︸︸ ︷
Ph· = h·,

redundant coordinate

minm ‖(Ph

image volume︷ ︸︸ ︷
δI(·, h;m, δd)) ‖2
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Image volume
Compute multi-D cross-correlations on multiexperiment solutions of 
the forward- and reverse-time Helmholtz systems--i.e,

with

and

where    
    

                                                                           
High dimensional and highly redundant ...

Uf =
[
u1 · · · unf

]
and Vf =

[
v1 · · · vnf

]

m =
1
2
(xs + xr) and h =

1
2
(xs − xr)

δI(m,h, t) =
(
Ū ∗ VT

)

(
Ū ∗ VT

)
:= T(xs,xr,ω) !→(m,h,t)




Ū1

. . .
Ūnf








VT

1
...

VT
nf
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Imaging condition 
Claerbout’s imaging principle:

 implicit in adjoint state method

 Image volume 
– very large because of additional degree of freedom
– expensive to store

δm = δI(·, h = 0, t = 0)
= K∗δd
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System-size reduction by CS
For each angular frequency, subsample with CS matrix

with 

Model-space CS subsampling along subsurface source, receiver, 
and depth coordinates yielding an approximate extended image

RM :=

sub sampler︷ ︸︸ ︷



Rσ
1 ⊗Rρ

1 ⊗Rζ
1

...
Rσ

n′
f
⊗Rρ

n′
f
⊗Rζ

n′
f





random phase encoder︷ ︸︸ ︷(
F∗

3

(
eîθ

))
F3 ,

n′
f × n′

σ × n′
ρ × n′

ζ " nf × ns × nr × nz

δI(m,h, t) ≈
(
Ū

(
RM

)∗ ∗RMVT
)
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Example
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Example: matched filter

Recovery from 64-fold subsampling ...
• Noisy
• Not focused

migrated CS image

20 40 60 80 100 120
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120

migrated CS cigs
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100

120

δI(·, h = 0, t = 0) δI([m1, m2, m3], h, t = 0)
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Tools
 Compressive sensing based on Johnson-Lindenstrauss embeddings

– Compressive sensing [Donoho, 06‘, Candes, Romberg, Tao, ‘06]

 Fast matrix computations based on Johnson-Lindenstrauss embeddings
– Improved Approximation Algorithms for Large Matrices via Random Projections by Tamás 

Sarlós, ’08

 Joint sparsity-promotion with mixed (1,2) norm minimization
– Joint-sparse recovery from multiple measurements by E. van den Berg and M. Friedlander, ‘09

X̃ = arg min
X

‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ,

b = RMx
x̃ = arg min

x
‖x‖1 subject to ‖RMx− b‖2 ≤ σ

x̃ ≈ x

[randomized subsampling]

AB ≈ A (RM)∗ (RM)B
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Extended Born & focusing
Define extended linearized forward model [Symes, ’09]:

– multiexperiment form amenable for joint sparsity promotion
– introduce penalty term that penalizes defocusing

Form augmented system with focusing:

with                   annihilator that increasingly penalizes non-zero offsets.

Solution involves multi-D “deconvolution” (adjoint of cross correlation):
  

data fit
focusing

K̄δI ≈ δD
λ2PhδI ≈ 0

Ph· = h·

(U∗ ! δI) ≈ VT

K̄[m,Q]δI ≈ δD
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Compressed linearized inversion
Compressively sample augmented system that includes sparsity 
synthesis operator--i.e, 
                                                  

                                                             

with the sparsifying transform S for each offset h given by the curvelet 
or wavelet transform

Recover focused solution by mixed (1,2)-norm minimization.

Promote sparsity amongst images though one-norm on columns

Penalize energy amongst rows => focusing

AX ≈ B
RM (U∗ ! S∗X) ≈ RMVT

PhX ≈ 0
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Joint-sparsity promotion [van den berg & Friedlander, ‘09]

Recover focused solution by mixed (1,2)-norm minimization:

with 

and

Solved with SPGL1.

X̃ = arg min
X

‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ,

‖X‖1,2 :=
∑

i∈rows(X)

‖rowi(X)∗‖2

‖X‖2,2 :=




∑

i∈rows(X)

‖rowi(X)∗‖2
2





1
2

.
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Example
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Example

Recovery from 64-fold subsampling ...

migrated CS image

20 40 60 80 100 120

20

40

60

80

100

120

inverted CS image

20 40 60 80 100 120

20

40

60

80

100

120

matched filter sparsity promotion
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Example
migrated CS cigs
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Common-image gathers are focussed.
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Observations & outlook
 CS allows for a compression of data volumes without significant 

loss of information yielding a reduction in computational costs

 CS has direct implications for seismic acquisition--from sequential 
to simultaneous acquisition

 Joint sparsity promotion allows for focusing

 Speculation: Proposed approach may be suitable to handle 
Symes’s proposal to add a degree of freedom yielding a nonlocal 
forward model in tandem with an inverse problem that penalizes 
nonlocality  through focusing ...
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