
Stable seismic data 
recovery

Felix J. Herrmann*
joint work with

Peyman Moghaddam*, Gilles Hennenfent* 
& Chris Stolk (Universiteit Twente)

*Seismic Laboratory for Imaging and 
Modeling 

slim.eos.ubc.ca
AIP 2007, Vancouver, June 26

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2007 SLIM group @ The University of British Columbia.



Combinations of parsimonious signal 
representations with nonlinear sparsity promoting 
programs hold the key to the next-generation of 
seismic inversion algorithms ...
Since they allow for formulations that are stable 
w.r.t. 

 noise 
 incomplete data
 moderate phase rotations and amplitude errors

Finding a sparse representation for seismic data & 
images is complicated because of

 wavefronts & reflectors are multiscale & multi-
directional

 the presence of caustics, faults and pinchouts
 the presence of operators (FIO’s & PsDO’s)



The seismic method
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Seismic data acquisition



Exploration seismology

• create images of the subsurface

• need for higher resolution/deeper

• clutter and data incompleteness 
are problems
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Forward problem

• second order hyperbolic PDE

• interested in the singularities of

F [c]u :=

(
1

c2(x)
· ∂2

∂t2
−

d∑

i=1

∂2

∂x2
1

)
u(x, t) = f(x, t)

m = c− c̄



Inverse problem
Minimization:

After linearization (Born app.) forward model with noise:

Conventional imaging:

    is prohibitively expensive to invert
         requires regular sampling ...

m̃ = arg min
m

‖d− F [m]‖2
2

d(xs, xr, t) =
(
Km

)
(xs, xr, t) + n(xs, xr, t)

(
KT d

)
(x) =

(
KT Km

)
(x) +

(
KT n

)
(x)

y(x) =
(
Ψm

)
(x) + e(x)

Ψ



Sparsity promoting 
inversion



Formulate as inverse problem

x̃ = arg min
x

‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

data misfitsparsity
enhancement

When a traveler reaches a fork in the road, the l1 -norm tells him to take either one way or the 
other, but the l2 -norm instructs him to head off into the bushes. 

John F. Claerbout and Francis Muir, 1973 

New field “compressive sampling”: D. Donoho, E. Candes et. al.,  M. Elad  etc. 

Preceded by others in geophysics: M. Sacchi & T. Ulrych and co-workers etc.  

signal =y + n noise

curvelet representation 
of ideal data

x0

A



Sparsity promoting inversion
     can be recovered by solving

Crux lies in finding the sparse representation!

x0

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
with

y = (incomplete) data
A = modeling matrix, e.g.A = RST

x̃ = recovered sparsity vector
ε = a number dependent on the noise level

ST = the synthesis matrix
f̃ = the recovered function f



Curvelets & seismology



Wish list
Transform that is parsimonious

 detects the wavefronts
 localized in space and frequency (phase space)
 some invariance under “wave propagation”

Events correspond to curved singularities with 
conflicting dips

 caustics
 faults & pinch outs

Need a transform that is
 multiscale
 multidirectional
 exactly reconstructs



Properties curvelet transform:
 multiscale: tiling of the FK domain into 

dyadic coronae
 multi-directional: coronae sub-

partitioned into angular wedges, # of 
angle doubles every other scale

 anisotropic: parabolic scaling principle
 Rapid decay space
 Strictly localized in Fourier
 Frame with moderate redundancy

Transform Underlying assumption

FK plane waves

linear/parabolic Radon transform linear/parabolic events

wavelet transform point-like events (1D singularities)

curvelet transform curve-like events (2D singularities)

k1

k2
angular

wedge
2j

2j/2

Representations for seismic data

fine scale data 

coarse scale data 



2-D curvelets
[Candes, Donoho, Demanet, Ying]

curvelets are of rapid decay 
in space

curvelets are strictly localized 
in frequency

x-t f-k
Oscillatory in one direction and smooth in the others!
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Significant
curvelet coefficient Curvelet

coefficient~0

Wavefront detection

curvelet coefficient is determined
by the dot product of the curvelet
function with the data



Compression

[From Demanet ‘05][From Demanet ‘05]



Curvelets live in wedges in the 3 D Fourier plane...

3-D curvelets



Nonlinear approximation



Nonlinear approximation



Curvelet-based seismic 
data recovery

joint work with Gilles Hennenfent



Sparsity-promoting inversion*
Reformulation of the problem

Curvelet Reconstruction with Sparsity-promoting 
Inversion (CRSI)

 look for the sparsest/most compressible,
physical solution KEY POINT OF THE 

RECOVERY

* inspired by Stable Signal Recovery (SSR) theory by E. Candès, J. Romberg, T. Tao, 
Compressed sensing by D. Donoho & Fourier Reconstruction with Sparse Inversion (FRSI) 
by P. Zwartjes

signal =y + n noise

curvelet representation 
of ideal data

x0

RCH

(P0)















x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖x‖0 s.t. ‖y−PCHx‖2 ≤ !

f̃= CH x̃

(P0)















x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖x‖0 s.t.

data misfit
︷ ︸︸ ︷

‖y−PCHx‖2 ≤ !

f̃= CH x̃

Pε :

{
x̃ = arg minx ‖Wx‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = CT x̃



Original data



85 % missing



Curvelet 
recovery

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-sampled data with missing traces

is a setting where a curvelet-based method will perform well (see e.g. Herrmann, 2005;

Hennenfent and Herrmann, 2006a, 2007). As with other transform-based methods, sparsity

is used to reconstruct the wavefield by solving Pε. It is also shown that the recovery

performance can be increased when information on the major primary arrivals is included

in the modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete data corresponds to the inversion

of the picking operator R. This operator models missing data by inserting zero traces at

source-receiver locations where the data is missing. The task of the recovery is to undo this

operation by filling in the zero traces. Since seismic data is sparse in the curvelet domain,

the missing data can be recovered by compounding the picking operator with the curvelet

modeling operator, i.e., A := RCT . With this definition for the modeling operator, solving

Pε corresponds to seeking the sparsest curvelet vector whose inverse curvelet transform,

followed by the picking, matches the data at the nonzero traces. Applying the inverse

transform (with S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in Figure 1, where a real 3-D seismic

data volume is recovered from data with 80 % traces missing (see Figure 1(b)). The missing

traces are selected at random according to a discrete distribution, which favors recovery (see

e.g. Hennenfent and Herrmann, 2007), and corresponds to an average sampling interval of

125 m . Comparing the ’ground truth’ in Figure 1(a) with the recovered data in Figure 1(c)

5



Observations
Inverted a rectangular matrix

 worked because the curvelet transform is sparse
 exploits the higher dimensional geometry of 

seismic wavefields
 curvelets are incoherent with the Dirac 

measurement basis

Data is recovered for large percentages of traces 
missing
Is an example of an inverse problem with 
incomplete data
Can these ideas be extended to recover 
migration amplitudes? 

 approximately invert a PsDO
 diagonalize zero-order PsDO’s



Stable seismic 
amplitude recovery

“Sparsity- and continuity-
promoting seismic image recovery 

with curvelet frames” 

by 

F.H, P. Moghaddam & C. Stolk

to appear in special issue on 
imaging in ACHA



Seismic Laboratory for Imaging and Modeling

Migrated data Amplitude-corrected & denoised 
migrated data



Existing scaling methods
Methods are based on a diagonal approximation of   .

 Illumination-based normalization (Rickett ‘02)
 Amplitude preserved migration (Plessix & Mulder ‘04)
 Amplitude corrections (Guitton ‘04)
 Amplitude scaling (Symes ‘07)

We are interested in an ‘Operator and image adaptive’ 
scaling method which

 estimates the action of     from a reference vector 
close to the actual image

 assumes a smooth symbol of     in space and angle
 does not require the reflectors to be conormal <=> 

allows for conflicting dips
 stably inverts the diagonal 

Ψ

Ψ

Ψ



Our approach
“Forward” model:

 diagonal approximation of the demigration-migration 
operator

 costs one demigration-migration to estimate the 
diagonal weighting

with
y = migrated data
A := CT Γ

AAT r ≈ KT Kr
K = the demigration operator
ε = migrated noise.

y = KT Km + ε

≈ Ax0 + ε



Solution
Solve

 need sparsity on the model
 invariance under the normal operator

P :






minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ = (AH)†x̃

with

J(x) =

sparsity︷ ︸︸ ︷
α‖x‖1 +β ‖Λ1/2

(
AH

)†
x‖p

︸ ︷︷ ︸
continuity

.



Nonlinear approximation
Migrated mobil data set



Nonlinear approximation
Recovery from largest 3 %



Nonlinear approximation
Difference



Diagonal approximation 
of the Hessian



Normal/Gramm operator
[Stolk 2002, ten Kroode 1997, de Hoop 2000, 2003]

In high-frequency limit     is a PsDO

• pseudolocal

• singularities are preserved

Inversion corrects for the ‘Hessian’

Ψ
(
Ψf

)
(x) =

∫

Rd
e−ix·ξa(x, ξ)f̂(ξ)dξ



• curvelets remain invariant

• approximation improves for higher frequencies

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Invariance of curvelets under the discretized normal operator Ψ for a smoothly

varying background model (a so-called lens model see Fig. 4(a)). Three coarse-scale

curvelets in the physical domain before (a) and after application of the normal opera-

tor (b) in the physical (a-b) and Fourier domain (e-f). The results for three fine-scale

curvelets are plotted in (c-d) for the physical domain and in (g-h) for the Fourier domain.

Remark: The curvelets remain close to invariant under the normal operator, a statement

which becomes more accurate for finer scale which is consistent with Theorem 1. The ex-

ample also shows that this statement only holds for curvelets that are in the support of the

imaging operator excluding steeply dipping curvelets.
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Invariance under Gramm matrix



So let Ψ = Ψ(x,D) be a pseudodifferential operator of order 0, with homo-
geneous principal symbol a(x, ξ).

in Rd.

Lemma 1. With C ′ some constant, the following holds

‖(Ψ(x,D)− a(xν , ξν))ϕν‖L2(Rn
) ≤ C ′2−|ν|/2. (14)

To approximate Ψ, we define the sequence u := (uµ)µ∈M = a(xµ, ξµ). Let DΨ be the

diagonal matrix with entries given by u. Next we state our result on the approximation of

Ψ by CTDΨC.

Theorem 1. The following estimate for the error holds

‖(Ψ(x,D)− CTDΨC)ϕµ‖L2(Rn
) ≤ C ′′2−|µ|/2, (15)

where C ′′ is a constant depending on Ψ.

This main result proved in Appendix A shows that the approximation error for the

diagonal approximation goes to zero for increasingly finer scales. The approximation derives

from the property that the symbol is slowly varying over the support of a curvelet, an

approximation that becomes more accurate as the scale increases.

Decomposition of the normal operator

By virtue of Theorem 1, the normal operator can be factorized

(
Ψϕµ

)
(x) $

(
CTDΨCϕµ

)
(x) (16)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ. Because the seismic reflectivity can be written as a

superposition of curvelets, we can replace ϕµ in the above equation with the model m. We

15

leading behavior for their composition, the normal operator Ψ, corresponds to that of an

order-one invertible elliptic PsDO .

To make this PsDOamenable to an approximation by curvelets, the following sub-

stitutions are made for the scattering operator and the model: K !→ K (−∆)−1/2 and

m !→ (−∆)1/2 m with ((−∆)αf)∧(ξ) = |ξ|2α · f̂(ξ). Alternatively, these operators can be

made zero-order by composing the data side with a 1/2-order fractional integration along

the time coordinate, i.e., K !→ ∂−1/2
t K (see e.g. 3). After these substitutions, the normal

operator Ψ becomes zero-order. Remark that these subsitutions are similar to the substi-

tution made in the WVD methods, where vaguelettes are introduced according the same

mappings. Before detailing the approximate diagonalization of the normal operator, we

first discuss the properties of continuous curvelets under this operator.

APPROXIMATION OF THE NORMAL OPERATOR

In this section, a diagonal approximation of the normal operator in the curvelet domain is

presented. Invariance properties of curvelets under the normal operator (see also Fig. 2)

are used. The approximation leads to a SVD-like decomposition of the normal operator

and makes large-scale seismic image recovery amenable to optimization. To understand our

approximation, we first list the important properties of continuous curvelets. An upper

bound for the L2-error of the diagonal approximation is discussed next, followed by the

diagonal decomposition of the normal operator and a method to numerically estimate the

diagonal from discrete implementations of the normal operator. We conclude this section

by discussing the empirical performance of the approximation on a synthetic data set.
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• Allows for the decomposition

in Rd.

Lemma 1. With C ′ some constant, the following holds

‖(Ψ(x,D)− a(xν , ξν))ϕν‖L2(Rn
) ≤ C ′2−|ν|/2. (14)

To approximate Ψ, we define the sequence u := (uµ)µ∈M = a(xµ, ξµ). Let DΨ be the

diagonal matrix with entries given by u. Next we state our result on the approximation of

Ψ by CTDΨC.

Theorem 1. The following estimate for the error holds

‖(Ψ(x,D)− CTDΨC)ϕµ‖L2(Rn
) ≤ C ′′2−|µ|/2, (15)

where C ′′ is a constant depending on Ψ.

This main result proved in Appendix A shows that the approximation error for the

diagonal approximation goes to zero for increasingly finer scales. The approximation derives

from the property that the symbol is slowly varying over the support of a curvelet, an

approximation that becomes more accurate as the scale increases.

Decomposition of the normal operator

By virtue of Theorem 1, the normal operator can be factorized

(
Ψϕµ

)
(x) $

(
CTDΨCϕµ

)
(x) (16)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ. Because the seismic reflectivity can be written as a

superposition of curvelets, we can replace ϕµ in the above equation with the model m. We

15

(
Ψϕµ

)
(x) !

(
CT DΨCϕµ

)
(x)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ.

Approximation



y(x) =
(
Ψm

)
(x) + e(x)

!
(
AAT m

)
(x) + e(x)

= Ax0 + e,

Approximation

Wavelet-vagulette like
Amenable to nonlinear recovery



Estimation of the 
diagonal scaling 



• Define a reference vector (say conventional image).

• Calculate ‘data’

• Define the matrix

• Invert

b = Ψr

v = CrP := CT diag(v) with

ũ = arg minu
1
2
‖b−Pu‖2

2 + η2‖Lu‖2
2

Diagonal estimation



• Impose smoothness in phase space

L = [D1 D2 Dθ]

extended to include q different reference vectors by making the following substitutions

b !→ [b1 · · · bq]T and P !→ [P1 · · · Pq]T with the “data” vector and “modeling” matrix

defined by the different reference vectors r1, . . . , rq.

Calculate: b = Ψr and v = Cr.

Set: η = ηmin;

while ∃ (ũµ)µ∈M < 0 do

Solve

ũ = arg minu
1
2‖b−Pu‖22 + η2‖Lu‖22

Increase the Lagrange multiplier

λ = η + ∆η

end while

Table 1: Estimation of the diagonal via regularized least-squares inversion. The Lagrange

multiplier is increased up to the point that all entries in the vector for the diagonal are

positive.

Given an appropriate reference vector r, the diagonal estimation procedure is as follows.

First, calculate the action of the normal operator on the reference vector and the curvelet

transform of this vector. Next we set the Lagrange multiplier to ηmin and solve Eq. (17)

for this η by inverting the system of equations in Eq. (18). The η is increased by ∆η until

all diagonal elements of ũ are nonnegative. Even though we do not have a proof for the

connvergence of this method, in practice increasing the η leads to positive entries.

The presented method for the estimation for the diagonal can be seen as an extension

to the method of illumination-based normalization (33), dating back to ideas by Symes and

19

Diagonal estimation



(a) (b)

(c) (d)

Figure 5: Estimates for the diagonal ũ are plotted in (a-d) for increasing η =

{0.01, 0.1, 1, 10}. The diagonal is estimated according the procedure outlined in Table 1

with the reference and ’data’ vectors, v and b, plotted in Fig. 4(b) and 4(c). As expected

the diagonal becomes more positive for increasing η.

Herrmann et.al. –

54

Diagonal estimation



Seismic amplitude 
recovery



• Final form

• Solve

y = Ax0 + ε

Recovery

with x0 = ΓCm and ε = Ae.

P :






minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ = (AH)†x̃

with

J(x) =

sparsity︷ ︸︸ ︷
α‖x‖1 +β ‖Λ1/2

(
AH

)†
x‖p

︸ ︷︷ ︸
continuity

.



Image recovery
anisotropic diffusion

[Black et. al ’98, Fehmers et. al. ’03 and Shertzer ‘03]

Define

with p=2

Jc(m) = ‖Λ1/2∇m‖p

The anisotropic-diffusion penalty term (see e.g. 24) is given by

Jc(m) = ‖Λ1/2∇m‖22 (28)

with ∇ the discretized gradient matrix defined as ∇ =
[
DT

1 DT
2

]T . The block-diagonal

matrix Λ is location dependent (see Fig. 10, which plots the gradients) and rotates the

gradient towards the tangents of the reflecting surfaces. This rotation matrix is given by

Λ[r] =
1

‖∇r‖22 + 2υ









+D2r

−D1r





(
+D2r −D1r

)
+ υId





(29)

with Di the discretized derivative in the ith coordinate direction and υ a parameter that

controls the fluctuations for regions where the gradient is small. Following (3), this control

parameter is set proportional to the median of |∇r| with | | the length of each gradient

vector (white arrows in Fig. 10). Similar to the diagonal approximation, a reference vector

derived from the migrated image (cf. Eq. 24) is used to calculate the tangential directions

of the reflecting surfaces.

By combining the two different penalty terms that promote sparsity and continuity, we

finally arrive at our approximate formulation for the seismic-amplitude recovery problem

Pε :






minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ =
(
AT

)† x

(30)

in which the composite penalty term J(x) is given by

J(x) = αJs(x) + βJc(x), (31)

with α, β ≥ 0 and α + β = 1. The Js(x) = ‖x‖1 is the %1-norm. The second term in the

penalty term is given by Jc(x) = ‖Λ1/2∇
(
AT

)† x‖22. Because the optimization is carried

out over x and not over the model vector m, this expression includes a pseudo-inverse that

is calculated with a few iterations of the LSQR algorithm (35).

26
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Step 1: Update of the Jacobian of 1
2‖y −Ax‖22:

x← x + AT (y −Ax) ;

Step 2: projection onto the !1 ball S = {‖x‖1 ≤ ‖x0‖1} by soft thresholding

x← Tλw(x);

Step 3: projection onto the anisotropic diffusion ball C = {x : J(x) ≤ J(x0)}
by

x← x− κ∇xJc(x)

Recovery



Initialize:

m = 0;

x0 = 0;

y = KTd;

Choose:

M and L

‖ATy‖∞ > λ1 > λ2 > · · ·

while ‖y −Ax̃‖2 > ε do

m = m + 1;

xm = xm−1;

for l = 1 to L do

xm = Tλm

(
xm + AT (y − xm)

)
{Iterative thresholding}

end for

Anisotropic descent update;

xm = xm − β∇xm Jc(xm);

end while

x̃ = xm; m̃ =
(
AT

)† x̃.

Table 2: Sparsity-and continuity-enhancing recovery of seismic amplitudes.
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Application to the SEG 
AA’ model









Example
SEGAA’ data:

 “broad-band” half-integrated wavelet [5-60 Hz]
 324 shots, 176 receivers, shot at 48 m
 5 s of data

Modeling operator
 Reverse-time migration with optimal check pointing 

(Symes ‘07)
 8000 time steps
 linearized modeling 64, and migration 294 minutes 

on 68 CPU’s

Scaling required 1 extra migration-demigration



Seismic Laboratory for Imaging and Modeling



Seismic Laboratory for Imaging and Modeling



Seismic Laboratory for Imaging and Modeling









Seismic Laboratory for Imaging and Modeling

Migrated data Amplitude-corrected & denoised 
migrated data



Seismic Laboratory for Imaging and Modeling

Noise-free data Noisy data
(3 dB)

Data from 
migrated image

Data from 
amplitude-corrected 
& denoised migrated 

image



Example
SEGAA’ data:

 “broad-band” half-integrated wavelet [5-60 Hz]
 324 shots, 176 receivers, shot at 48 m
 5 s of data

Modeling operator
 Reverse-time migration with optimal check pointing 

(Symes ‘07)
 8000 time steps
 full modeling 

Scaling required 1 extra migration-demigration







Conclusions
Curvelet-domain scaling

 handles conflicting dips (conormality assumption)
 exploits invariance under the PsDO
 robust w.r.t. noise

Diagonal approximation
 exploits smoothness of the symbol
 uses “neighbor” structure of the curvelet 

transform

Results on the SEG AA’ show
 recovery of amplitudes beneath the Salt
 successful recovery of clutter
 improvement of the continuity 
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