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Combinations of parsimonious signal
representations with nonlinear sparsity promoting
programs hold the key to the next-generation of
seismic inversion algorithms ...

Since they allow for formulations that are stable
w.r.t.

" noise

" jncomplete data

® moderate phase rotations and amplitude errors

Finding a sparse representation for seismic data &
images is complicated because of

= wavefronts & reflectors are multiscale & multi-
directional

= the presence of caustics, faults and pinchouts
= the presence of operators (FIO's & PsDQO’s)







Seismic data acquisition
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Forward problem

® second order hyperbolic PDE

® interested in the singularities of

m =¢ — C




Inverse problem

Minimization:
m = argmin ||d — F[m]||5
m

After linearization (Born app.) forward model with noise:
d(xs, xr,t) = (Km)(zs, zp,t) + n(xs, Tp, t)

Conventional imaging:

(K'd)(z) = (K'Km)(x)+ (K'n)(z)
y(z) = (¥m)(z)+e()

U is prohibitively expensive to invert
requires regular sampling ...







Formulate as inverse problem

signal— A + |n [« noise

curvelet representation
of ideal data

D —

X = argmin ||x||; s.t. ||[Ax—y|2 <e
X
t t

sparsity data misfit
enhancement

When a traveler reaches a fork in the road, the |1 -norm tells him to take either one way or the
other, but the |12 -norm instructs him to head off into the bushes.

John F. Claerbout and Francis Muir, 1973
New field “compressive sampling”: D. Donoho, E. Candes et. al., M. Elad etc.

Preceded by others in geophysics: M. Sacchi & T. Ulrych and co-workers etc. L\SLIM
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Sparsity promoting inversion

Xpcan be recovered by solving

= arg miny ||x|[; s.t. |[|[Ax—y|s <€
f=8"x

(incomplete) data

modeling matrix, e.g. A = RS’
recovered sparsity vector

a number dependent on the noise level
the synthesis matrix

the recovered function f

Crux lies in finding the sparse representation! \A)






Wish list

Transform that is parsimonious
= detects the wavefronts
= |ocalized in space and frequency (phase space)
® some invariance under “wave propagation”

Events correspond to curved singularities with

conflicting dips
® caustics
= faults & pinch outs

Need a transform that is
®" multiscale
®" multidirectional
= exactly reconstructs




Representations for seismic data

Transform

Underlying assumption

FK

blane waves

linear/parabolic Radon transform

inear/parabolic events

wavelet transform

point-like events (1D singularities)

curvelet transform

curve-like events (2D singularities)

Properties curvelet transform:

= multiscale: tiling of the FK domain into

dyadic coronae
multi-directional: coronae sub-

partitioned into angular wedges, # of

angle doubles every other scale

anisotropic: parabolic scaling principle

Rapid decay space
Strictly localized in Fourier

Frame with moderate redundancy
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angular
// wedge
fine scale data
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-D curvelets

[Candes, Donoho, Demanet, Ying]
k

X 0.4 0.2 0

curvelets are strictly localized
in frequency

X-t f-k

Oscillatory in one direction and smooth in the others!




Wavefront detection

Offset (m)

Significant

curvelet coefficient Curvelet

coefficient~0

curvelet coefficient 1s determined
by the dot product of the curvelet
function with the data

L\SLIM
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Compression

Interested in functions discontinnous along a piecewise smooth (C'?)

interface, and otherwise smooth (C?).

Theorem (Candes, Donoho). For such a model f, the best m-term

curvelet expansion f,, obeys

f = fml|l? < Cm™2*(logm)?.

Note: wavelets would give O(m™1!), so do ridgelets (Candes).

[From Demanet ‘05]




3-D curvelets

Curvelets live in wedges in the 3 D Fourier plane...



Nonlinear approximation

Lateral (m)




Nonlinear approximation

Lateral (m)







Sparsity-promoting inversion®

Reformulation of the problem

signal— RC H

curvelet representation
of ideal data

Curvelet Reconstruction with Sparsity-promoting
Inversion (CRSI)

= |look for the sparsest/most compressible,

physical solution <@=KEY POINT OF THE
RECOVERY

sparsity constraint data misfit
——— - ™ ~

P . = argminy |[Wx|[; s.t. [[Ax—yls <e€

* inspired by Stable Signal Recovery (SSR) theory by E. Candes, J. Romberg, T. Tao,
Compressed sensing by D. Donoho & Fourier Reconstruction with Sparse Inversion (FRSI) |
by P. Zwartjes :




Original data




85 % missing




Curvelet
recovery

A = RCY




Observations

Inverted a rectangular matrix
= worked because the curvelet transform is sparse

= exploits the higher dimensional geometry of
seismic wavefields

B curvelets are incoherent with the Dirac
measurement basis

Data is recovered for large percentages of traces
missing

Is an example of an inverse problem with
incomplete data

Can these ideas be extended to recover
migration amplitudes?

= approximately invert a PsDO

= diagonalize zero-order PsDO’s




"¢> ",‘ OFf . |/ -

promoting seismic image recovery
with curvelet frames”
by
F.H, P. Moghaddam & C. Stolk

to appear in special issue on
imaging in ACHA
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Existing scaling methods

Methods are based on a diagonal approximation of W/
= Tllumination-based normalization (Rickett '02)

dlituc
dlituc

dlituc

e preserved migration (Plessix & Mulder '04)
e corrections (Guitton '04)
e scaling (Symes '07)

We are interested in an 'Operator and image adaptive’
scaling method which

= estimates the action of V from a reference vector
close to the actual image

" assumes a smooth symbol of J in space and angle

= does not require the reflectors to be conormal <=>
allows for conflicting dips

= stably inverts the diagonal



Our approach

“Forward” model:
y = K/'Km+e
AX() + &

migrated data

C'T

K'Kr

the demigration operator
migrated noise.

®= diagonal approximation of the demigration-migration
operator

= costs one demigration-migration to estimate the
diagonal weighting




Solution

ming J(x) subject to |y — Ax|ls <e
m = (AH)Tx

sparsity

/_/\ﬂ -‘-
J(x) = aflx|1 +5 (1A (A7) x|,
N— —

continuity

®" need sparsity on the model
®" invariance under the normal operator




Nonlinear approximation

Migrated mobil data set
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Nonlinear approximation

Recovery from largest 3 %
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Nonlinear approximation

Difference
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Normal/Gramm operator

[Stolk 2002, ten Kroode 1997, de Hoop 2000, 2003]

In high-frequency limit Wis a PsDO

® pseudolocal
® singularities are preserved

Inversion corrects for the ‘Hessian’




Invariance under Gramm matrix
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® curvelets remain invariant

® approximation improves for higher frequencies




Approximation

So let ¥ = W(x, D) be a pseudodifferential operator of order 0, with homo-
geneous principal symbol a(x, &).

K — K(-A)Y2  or K — 8;1/2[(
m— (—A)Y2m with  (=2)2H)NE) = €% f(©).

Lemma 1. With C' some constant, the following holds

|(¥(z, D) - a2y, &) pull ey < C'271/2. (14)

To approximate ¥, we define the sequence u := (u,)cm = a(zy,§,). Let Dy be the

diagonal matrix with entries given by u. Next we state our result on the approximation of

U by C'DyC.




Approximation

Theorem 1. The following estimate for the error holds

< C”’2—|M|/27

H(\If(a:, D) — CTD\PC)S@MHL2(R”

)

where C" is a constant depending on W.

Allows for the decomposition

(\P@%)(w) (CTD\PC@M)(@
(AATQOM) ()

with A := v/DgC and A .= C*'+/Dy.



Approximation

(Im)(z) + e(x)

(AA" m)(z) + e(x)
A.CIZ() + €,

Wavelet-vaqgulette like
Amenable to nonlinear recovery







Diagonal estimation

Define a reference vector (say conventional image).
Calculate ‘data’

b = Wr

Define the matrix
P := C' diag(v) with v =Cr

Invert

N !
il = arg min §Hb — Pu|5 + n*||Lul|5




Diagonal estimation

Impose smoothness in phase space

L=D; D; Dy

Calculate: b = ¥r and v = Cr.
Set: 17 = Nmin;
while 3 (u,),em < 0 do

Solve

i = arg ming 3[[b — Pul3 + 72| Lul3

Increase the Lagrange multiplier

A=n+ Ang

end while




Diagonal estimation

Diagonal estimation 0.01 Diagonal estimation 0.1
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Recovery

Final form

y = Axg+ ¢

with xg = I'Cm and € = Ae.

Solve miny J(x) subject to |y — Ax|s <e

m = (AH)Tx

sparsity
/_/\ T
J(x) = aflx|1 +5 (| (A7) x|,

N——— —

continuity




Image recovery

anisotropic diffusion

[Black et. al 98, Fehmers et. al. ‘03 and Shertzer ‘03]

Jo(m) = |AY?Vm]|,

DQI‘

<—|—D2r —DlI') + vld




Gradient of the reference vector

s Wm»f

XJl}JW“
l,.,,,//H(
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Recovery

Step 1: Update of the Jacobian of %|ly — Ax||3:

x —x+ Al (y — Ax);
Step 2: projection onto the ¢ ball S = {||x||1 < ||x0||1} by soft thresholding

X «— Thw(X);

Step 3: projection onto the anisotropic diffusion ball C' = {x: J(x) < J(x¢)}
by

X «— X — kVxJ.(X)




Initialize:

y = K'd;

Choose:

M and L

IATY[loo > A1 > Ay > -+
while ||y — Ax|[> > € do

m=m -+ 1;

for/ =1to L do

x™ =Ty, (x™ + AT (y — x™) ) {Iterative thresholding}

end for
Anisotropic descent update;
XM =x" — BVxm J.(xM);

end while

Table 2: Sparsity-and continuity-enhancing recovery of seismic amplitudes.
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Example

SEGAA' data:
= “broad-band” half-integrated wavelet [5-60 Hz]

® 324 shots, 176 receivers, shot at 48 m
® 5 s of data

Modeling operator
= Reverse-time migration with optimal check pointing
(Symes '07)
= 8000 time steps
= linearized modeling 64, and migration 294 minutes
on 68 CPU’s

Scaling required 1 extra migration-demigration
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lrace—by—trace comparison
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lrace—by—trace comparison




Comparison
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Example

SEGAA’ data:
= “broad-band” half-integrated wavelet [5-60 Hz]
® 324 shots, 176 receivers, shot at 48 m
®= 5 s of data

Modeling operator

= Reverse-time migration with optimal check pointing
(Symes '07)

= 8000 time steps
= full modeling

Scaling required 1 extra migration-demigration
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Conclusions

Curvelet-domain scaling
® handles conflicting dips (conormality assumption)
= exploits invariance under the PsDO
" robust w.r.t. noise

Diagonal approximation

= exploits smoothness of the symbol

= uses “"neighbor” structure of the curvelet
transform

Results on the SEG AA’ show
®= recovery of amplitudes beneath the Salt
= successful recovery of clutter
= improvement of the continuity
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