
TLDR: basically probabilistic loop-unrolling by making each unrolled layer be the 
posterior mean of a conditional normalizing flow. 

Offline training cost:  simulation cost  training samples  refinement steps L 
Online inference cost: simulation cost  refinement steps L 

As compared to a traditional least-squares, our posterior mean is more accurate at a 
fraction of the compute cost.  
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Training phase for our medical imaging application: 

Compared to current UQ methods [3] (Laplacian approximation), our uncertainty is 
many times cheaper and yields interpretable UQ that correlates with errors.  

Uncertainty

Our errorLaplacian uncertainty Laplacian error Our uncertainty

After three training 
iterations, we plot the 
mean of 256 posterior 
samples 

 
The baseline is 
traditional least-
squares.

x3 = 𝔼pθ2(x|ȳ2)[x | ȳ2] .

Ground truth imageTraditional method Our method x3

By combining the statistical concept of summary statistics with machine learning, we 
arrive to an iterative framework that computes an efficient middle ground between 
amortized posterior approximation and non-amortized approaches.  

Our method has an expensive offline training phase but is extremely efficient at online 
inference time as compared to traditional non-amortized approaches. 

[1] Ardizzone, Lynton, et al. "Guided image generation with conditional invertible 
neural networks."  (2019). 
[2] Alsing, Justin, and Benjamin Wandelt. "Generalized massive optimal data 
compression." Monthly Notices of the Royal Astronomical Society: Letters 476.1 (2018): 
[3] Bates, Oscar, et al. "A probabilistic approach to tomography,with an application to 
full waveform inversion in medical ultrasound." Inverse Problems (2022): 

Goal: Amortized posterior sampling method with low cost at inference but with better 
approximation quality than current amortized approaches.  

We start from conditional normalizing flows [1] that use a training objective requiring 
pairs of observations and ground truth image. 

Problem: imaging modality is non-linear and high-dimensional thus posterior samples 
are poor when using raw observation  as input. 

Posterior sampling after training:

y

Neural posterior approximation 

Refining Amortized Posterior Approximations using Gradient-Based Summary Statistics

Proposed algorithm Image reconstruction

Conclusions

Generative model 
+ physics

min
θ

𝔼x,y∼p(x,y) [ fθ(x; y)
2

2
− log | det Jfθ |]

Observation y
Posterior samples 
x ∼ p(x |y)

. . .

Solution: use summary statistics to efficiently preprocess training of normalizing flow. 
The score of the log-likelihood  requires solving wave simulations  but 
provides an informative summary statistic [2]. 

Note: this method still works in likelihood-free setting if you have a good enough 
approximation to the true likelihood. Here we assume Gaussian additive noise to form 
likelihood although the true likelihood corresponds to a Gaussian convolved with the 
transducer wavelet.  

Problem: the quality of starting guess  might reduce the informativeness of the 
summary. We need a way to improve the starting guess.  

Posterior sampling after training: 

log p(y |x) ℱ

x0

Gradient-based summary statistic

min
θ0

𝔼x,y∼p(x,y) [ fθ0
(x; ȳ0)

2

2
− log | det Jfθ |] (5)

where ȳ0 = ∇log p(y |x0) = J⊤
ℱ(ℱ(x0) − y)

ȳ0 = ∇log p(y |x0)x0 Wave simulations ℱ

Lab experiment

ȳ1 = ∇log p(y |x1)x1 = 𝔼pθ0(x|ȳ0)[x | ȳ0]

Repeat training 
on new pairs 
{xn, ȳ1

n}n=Ntrain
n=1

• Train on pairs 
 

• Produce posterior 
samples and 
calculate their mean 
to make next 
starting guess 

{xn, ȳ0
n}n=Ntrain

n=1

x1

min
θ2

𝔼x,y∼p(x,y) [ fθ2
(x; ȳ2)

2

2
− log | det Jfθ |]

ȳ2 = ∇log p(y |x2) = J⊤(ℱ(x2) − y)

Posterior sampling after training:
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