WARNING:
JavaScript is turned OFF. None of the links on this concept map will
work until it is reactivated.
If you need help turning JavaScript On, click here.
This Concept Map, created with IHMC CmapTools, has information related to: Dim_Reduc, Q is the source matrix, ∇F is the linearized Born scattering matrix, correlations between <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> A and </mtext> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> t </mtext> </mmultiscripts> </mrow> </math>, the misfit can be Robust misfit, Subsampling by considering a fixed small number, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <munderover> <mtext> min </mtext> <mtext> m </mtext> <none/> </munderover> <mtext> φ(m) = ρ(D - F(m;Q)) </mtext> </mrow> </math> where m, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <munderover> <mtext> min </mtext> <mtext> δm </mtext> <none/> </munderover> <mtext> </mtext> <mmultiscripts> <mtext> ||δD- ∇F(m;Q) δm|| </mtext> <mtext> 2 </mtext> <mtext> 2 </mtext> </mmultiscripts> </mrow> </math> where ∇F, Simultaneous sources given by <math xmlns="http://www.w3.org/1998/Math/MathML"> <mmultiscripts> <mrow> <munderover> <mtext> q </mtext> <none/> <mtext> ~ </mtext> </munderover> </mrow> <mtext> j </mtext> <none/> </mmultiscripts> <mtext> = </mtext> <sum/> <mmultiscripts> <mtext> w </mtext> <mtext> ij </mtext> <none/> </mmultiscripts> <mmultiscripts> <mtext> q </mtext> <mtext> i </mtext> <none/> </mmultiscripts> </math>, gradient updates of the form <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> t+1 </mtext> </mmultiscripts> <mtext> = </mtext> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> t </mtext> </mmultiscripts> <mtext> + </mtext> <mmultiscripts> <mtext> A </mtext> <none/> <mtext> H </mtext> </mmultiscripts> <mtext> (b - A </mtext> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> t </mtext> </mmultiscripts> <mtext> ) </mtext> </mrow> </math>, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> R </mtext> <none/> <mtext> Σ </mtext> </mmultiscripts> <mtext> ⊗I </mtext> </mrow> </math> with <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> R </mtext> <none/> <mtext> Σ </mtext> </mmultiscripts> </mrow> </math>, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <munderover> <mtext> min </mtext> <mtext> δm </mtext> <none/> </munderover> <mtext> </mtext> <mmultiscripts> <mtext> ||δD- ∇F(m;Q) δm|| </mtext> <mtext> 2 </mtext> <mtext> 2 </mtext> </mmultiscripts> </mrow> </math> where δD, Batching allows explicit control over the error, δD is the linearized data, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> w </mtext> <mtext> i </mtext> <none/> </mmultiscripts> </mrow> </math> are Uniform randomly selected columns of the scaled identity matrix, m is the vector of unknow medium parameters, Optimally sparse representation of wavefields in Curvelet frame, Non-linear Problem is given by <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <munderover> <mtext> min </mtext> <mtext> m </mtext> <none/> </munderover> <mtext> φ(m) = ρ(D - F(m;Q)) </mtext> </mrow> </math>, F is the forward operator, the misfit can be Least-Squares misfit, LASSO problem can be solved using <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> SPGL </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> </mrow> </math>