WARNING:
JavaScript is turned OFF. None of the links on this concept map will
work until it is reactivated.
If you need help turning JavaScript On, click here.
This Concept Map, created with IHMC CmapTools, has information related to: Compressive_Sensing, a signal of dimension Nx1 which is sparse or compressible, x is sparse or compressible, Basis Pursuit (BP) is given by <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <munderover> <mtext> min </mtext> <munderover> <mtext> x </mtext> <none/> <mtext> - </mtext> </munderover> <none/> </munderover> <mtext> </mtext> <mmultiscripts> <mrow> <mtext> || </mtext> <munderover> <mtext> x </mtext> <none/> <mtext> - </mtext> </munderover> <mtext> || </mtext> </mrow> <mtext> 1 </mtext> <none/> </mmultiscripts> <mtext> s.t. A </mtext> <munderover> <mtext> x </mtext> <none/> <mtext> - </mtext> </munderover> <mtext> =y </mtext> </mrow> </math>, approximately minimizes one-norm regularized least-squares problems using Spectral Projected Gradient, Basis Pursuit Denoise (BPDN) without noise it becomes Basis Pursuit (BP), the sparse or compressible stucture of the acquired signals by designing Non-adaptive sampling techniques, a MxN sensing matrix with M<<N, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> r </mtext> <none/> <mtext> t </mtext> </mmultiscripts> <mtext> = y - A </mtext> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> t </mtext> </mmultiscripts> <mtext> + ( </mtext> <mmultiscripts> <mtext> I </mtext> <mtext> t </mtext> <none/> </mmultiscripts> <mtext> /N) </mtext> <mmultiscripts> <mtext> r </mtext> <none/> <mtext> t-1 </mtext> </mmultiscripts> </mrow> </math> where <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> η( . ; </mtext> <mmultiscripts> <mtext> θ </mtext> <mtext> t </mtext> <none/> </mmultiscripts> <mtext> ) </mtext> </mrow> </math>, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> f= </mtext> <mmultiscripts> <mtext> Ψ </mtext> <none/> <mtext> H </mtext> </mmultiscripts> <mtext> x </mtext> </mrow> </math> where f, a signal of dimension Nx1 with M<<N, QP can be solved using Approximate Message Passing (AMP), Basis Pursuit (BP) can be solved using Iterative Soft Thresholding (IST), <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> (1- </mtext> <mmultiscripts> <mtext> δ </mtext> <mtext> k </mtext> <none/> </mmultiscripts> <mtext> ) </mtext> <mmultiscripts> <mtext> ||x|| </mtext> <mtext> 2 </mtext> <mtext> 2 </mtext> </mmultiscripts> <mtext> ≤ </mtext> <mmultiscripts> <mtext> ||Ax|| </mtext> <mtext> 2 </mtext> <mtext> 2 </mtext> </mmultiscripts> <mtext> ≤ (1+ </mtext> <mmultiscripts> <mtext> δ </mtext> <mtext> k </mtext> <none/> </mmultiscripts> <mtext> ) </mtext> <mmultiscripts> <mtext> ||x|| </mtext> <mtext> 2 </mtext> <mtext> 2 </mtext> </mmultiscripts> </mrow> </math> holds for all K-sparse vectors, Random matrices such as Gaussian matrices, QP can be solved using Iterative Soft Thresholding (IST), Iterative Soft Thresholding (IST) is given by <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> t+1 </mtext> </mmultiscripts> <mtext> = η( </mtext> <mmultiscripts> <mtext> A </mtext> <none/> <mtext> H </mtext> </mmultiscripts> <mmultiscripts> <mtext> r </mtext> <none/> <mtext> t </mtext> </mmultiscripts> <mtext> + </mtext> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> t </mtext> </mmultiscripts> <mtext> ; </mtext> <mmultiscripts> <mtext> θ </mtext> <mtext> t </mtext> <none/> </mmultiscripts> <mtext> ) </mtext> </mrow> </math>, SPGL1 solves Basis Pursuit Denoise (BPDN), vectors to be strictly sparse, Fourier matrices with randomly selected rows for <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> M ≥ C . K </mtext> <mmultiscripts> <mtext> (log N) </mtext> <none/> <mtext> 4 </mtext> </mmultiscripts> </mrow> </math>, Φ is a MxN measurement matrix